Abstract

Procedures are described to figure optical surfaces by ion polishing. Fused silica, ULE, and Cer-Vit were employed as substrate materials. The sputtering yields for these materials were: 1.9 (150-keV40 Ar+), 1.86 (150-keV 40Ar+), and 3.7 (80-keV 126Xe+) atoms/ion, respectively. The optical scatter, at λ = 632.8 nm, was measured to be 0.06%, which is comparable to good surfaces prepared by conventional lap techniques. The rms surface error was reduced from 0.05λ to 0.01λ over the central 0.12-m aperture of a 0.2-m diam fused silica flat by ion polishing with 150-keV 40Ar+. Based on this experience, the design of a manufacturing facility is discussed.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Meinel, S. Bashkin, D. A. Loomis, Appl. Opt. 4, 1674 (1965).
    [CrossRef]
  2. J. B. Schroeder, S. Bashkin, J. F. Nester, Appl. Opt. 5, 1031 (1966).
    [CrossRef] [PubMed]
  3. J. B. Schroeder, H. D. Dieselman, J. Appl. Phys. 40, 2559 (1969).
    [CrossRef]
  4. R. A. Jones, P. L. Kadakia, J. Appl. Phys. 7, 1477 (1968).
  5. H. D. Polster, Appl. Opt. 8, 522 (1969).
    [CrossRef]
  6. R. M. Scott, Appl. Opt. 8, 531 (1969).
  7. W. Primak, J. Luthra, J. Appl. Phys. 37, 2287 (1966).
    [CrossRef]

1969 (3)

H. D. Polster, Appl. Opt. 8, 522 (1969).
[CrossRef]

R. M. Scott, Appl. Opt. 8, 531 (1969).

J. B. Schroeder, H. D. Dieselman, J. Appl. Phys. 40, 2559 (1969).
[CrossRef]

1968 (1)

R. A. Jones, P. L. Kadakia, J. Appl. Phys. 7, 1477 (1968).

1966 (2)

1965 (1)

Bashkin, S.

Dieselman, H. D.

J. B. Schroeder, H. D. Dieselman, J. Appl. Phys. 40, 2559 (1969).
[CrossRef]

Jones, R. A.

R. A. Jones, P. L. Kadakia, J. Appl. Phys. 7, 1477 (1968).

Kadakia, P. L.

R. A. Jones, P. L. Kadakia, J. Appl. Phys. 7, 1477 (1968).

Loomis, D. A.

Luthra, J.

W. Primak, J. Luthra, J. Appl. Phys. 37, 2287 (1966).
[CrossRef]

Meinel, A. B.

Nester, J. F.

Polster, H. D.

H. D. Polster, Appl. Opt. 8, 522 (1969).
[CrossRef]

Primak, W.

W. Primak, J. Luthra, J. Appl. Phys. 37, 2287 (1966).
[CrossRef]

Schroeder, J. B.

J. B. Schroeder, H. D. Dieselman, J. Appl. Phys. 40, 2559 (1969).
[CrossRef]

J. B. Schroeder, S. Bashkin, J. F. Nester, Appl. Opt. 5, 1031 (1966).
[CrossRef] [PubMed]

Scott, R. M.

R. M. Scott, Appl. Opt. 8, 531 (1969).

Appl. Opt. (4)

J. Appl. Phys. (3)

W. Primak, J. Luthra, J. Appl. Phys. 37, 2287 (1966).
[CrossRef]

J. B. Schroeder, H. D. Dieselman, J. Appl. Phys. 40, 2559 (1969).
[CrossRef]

R. A. Jones, P. L. Kadakia, J. Appl. Phys. 7, 1477 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Arrangement of ion polishing laboratory: 1, accelerator power supply; 2, deflector plate; 3, sample chamber; 4, sample; 5, quadrupole magnets; 6, analyzing magnet; 7, accelerator; 8, shielded wall.

Fig. 2
Fig. 2

Schematic of optical scatter measuring apparatus.

Fig. 3
Fig. 3

Strain of flat mirrors due to the implantation of foreign atoms into the mirror surface.

Fig. 4
Fig. 4

Before and after Fizeau interferograms of a 0.2-m diam TVS flat. The rms figure error of central 0.12-m aperture was reduced from 0.05λ to 0.01λ.

Fig. 5
Fig. 5

Time required to remove 250-nm (λ/2) from the entire surface of a f/5 sphere of the indicated diameter. The three ion beam currents were 20mA, 2mA, and 0.2mA (top to bottom).

Fig. 6
Fig. 6

Computer simulated removal to show the effect of the cross section of the ion beam on the ability to correct localized surface defects.

Tables (2)

Tables Icon

Table I Sputter Efficiencies

Tables Icon

Table II Induced Stresses

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q = i t = e ρ A d N Z / η M ,
σ = 4 E w 2 S / 3 ( 1 - ν ) D 2 t ,

Metrics