Abstract

The 13.7-m Czerny-Turner spectrograph at the McMath solar telescope is evaluated with regard to polarization properties. Let I = the transmissivity of the spectrograph for incident light linear polarized parallel to the entrance slit and I = transmissivity for light polarized perpendicular to the entrance slit. The ratio I/I was measured photoelectrically as a function of wavelength in six diffraction orders. Values of this ratio vary from 0.3 to 20. It is shown that spectrograph transmission as a function of polarization may cause large photometric and radiometric errors. This fact is not unique to this particular instrument. Two mechanisms appear to contribute to the polarizance of the grating. These are: (1) the Rayleigh or Wood’s anomalies in which polarizance maxima and minima occur and (2) a vector wave interaction introduced because groove dimension is nearly the same as the wavelength. For λ > groove depth it is found that the wavelength of a peak polarizance (λp) is given by λp = 0.7d cosθ, where d is the ruling separation and θ is the grating angle. Photoelectric scans of the solar spectrum were made across several of the Wood’s anomalies to obtain their profiles.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, Phil. Mag. 4, 396 (1902).
  2. R. W. Wood, Phil. Mag. 23, 310 (1912).
  3. R. W. Wood, Phys. Rev. 48, 928 (1935).
    [CrossRef]
  4. Rayleigh, Phil. Mag. 14, 60 (1907).
  5. C. H. Palmer, J. Opt. Soc. Amer. 42, 269 (1952).
    [CrossRef]
  6. C. H. Palmer, J. Opt. Soc. Amer. 46, 50 (1956).
    [CrossRef]
  7. C. H. Palmer, J. Opt. Soc. Amer. 51, 1438 (1961).
    [CrossRef]
  8. J. E. Stewart, W. S. Gallaway, Appl. Opt. 1, 421 (1962).
    [CrossRef]
  9. V. Twersky, J. Res. Nat. Bur. Stand. 64D, 715 (1960).
  10. E. A. Yakovlev, Opt. Spektrosk. 19, 417 (1965) [Opt. Spectrosc. 19, 233 (1965)].
  11. G. W. Stroke, Handbuch der Physik (Springer, Berlin, 1967), Vol. 29, pp. 426–735.
    [CrossRef]
  12. R. P. Madden, J. Strong, in Concepts of Classical OpticsJ. Strong, ed. (Freeman, San Francisco, 1958), Appendix P.
  13. P. Bousquet, Compt. Rend. Acad. Sci. Paris 257, 80 (1963).
  14. G. W. Stroke, Rev. Opt. 39, 291 (1960).
  15. S. Fujiwara, Y. Iguchi, J. Opt. Soc. Amer. 58, 361 (1968).
    [CrossRef]
  16. A. K. Pierce, Appl. Opt. 3, 1337 (1964).
    [CrossRef]
  17. H. W. Babcock, Mt. Wilson and Palomar Observatories, private correspondence (1969).
  18. J. W. Brault, Kitt Peak Nat. Observ., private communication (1969).
  19. Polaroid Corp., Information Sheet FT4354 (1967).
  20. K. D. Mielenz, K. F. Nefflen, W. R. C. Rowley, D. C. Wilson, E. Englehard, Appl. Opt. 7, 289 (1968).
    [CrossRef] [PubMed]
  21. E. A. Yakovlev, F. M. Gerasimov, Opt. Spektrosk. 10, 104 (1961) [Opt. Spectrosc. 10, 50 (1961)].
  22. H. M. Dyck, Kitt Peak Nat. Observ., private communication (1969).
  23. C. L. Hyder, Sacramento Peak Observ., Solar Research Note No. 24 (1966).
  24. R. V. Jones, J. C. S. Richards, Proc. Roy. Soc. (London) A225, 122 (1954).
  25. H. G. van Bueren, H. Nieuwenhuijzen, Bull. Astron. Inst. Neth. 18, 170 (1966).
  26. E. A. Gurtovenko, L. U. Fedorenko, Solar Phys. 6, 465 (1969).
    [CrossRef]
  27. A. K. Pierce, J. Opt. Soc. Amer. 47, 6 (1957).
    [CrossRef]

1969 (1)

E. A. Gurtovenko, L. U. Fedorenko, Solar Phys. 6, 465 (1969).
[CrossRef]

1968 (2)

1967 (1)

Polaroid Corp., Information Sheet FT4354 (1967).

1966 (2)

C. L. Hyder, Sacramento Peak Observ., Solar Research Note No. 24 (1966).

H. G. van Bueren, H. Nieuwenhuijzen, Bull. Astron. Inst. Neth. 18, 170 (1966).

1965 (1)

E. A. Yakovlev, Opt. Spektrosk. 19, 417 (1965) [Opt. Spectrosc. 19, 233 (1965)].

1964 (1)

1963 (1)

P. Bousquet, Compt. Rend. Acad. Sci. Paris 257, 80 (1963).

1962 (1)

1961 (2)

C. H. Palmer, J. Opt. Soc. Amer. 51, 1438 (1961).
[CrossRef]

E. A. Yakovlev, F. M. Gerasimov, Opt. Spektrosk. 10, 104 (1961) [Opt. Spectrosc. 10, 50 (1961)].

1960 (2)

G. W. Stroke, Rev. Opt. 39, 291 (1960).

V. Twersky, J. Res. Nat. Bur. Stand. 64D, 715 (1960).

1957 (1)

A. K. Pierce, J. Opt. Soc. Amer. 47, 6 (1957).
[CrossRef]

1956 (1)

C. H. Palmer, J. Opt. Soc. Amer. 46, 50 (1956).
[CrossRef]

1954 (1)

R. V. Jones, J. C. S. Richards, Proc. Roy. Soc. (London) A225, 122 (1954).

1952 (1)

C. H. Palmer, J. Opt. Soc. Amer. 42, 269 (1952).
[CrossRef]

1935 (1)

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

1912 (1)

R. W. Wood, Phil. Mag. 23, 310 (1912).

1907 (1)

Rayleigh, Phil. Mag. 14, 60 (1907).

1902 (1)

R. W. Wood, Phil. Mag. 4, 396 (1902).

Babcock, H. W.

H. W. Babcock, Mt. Wilson and Palomar Observatories, private correspondence (1969).

Bousquet, P.

P. Bousquet, Compt. Rend. Acad. Sci. Paris 257, 80 (1963).

Brault, J. W.

J. W. Brault, Kitt Peak Nat. Observ., private communication (1969).

Dyck, H. M.

H. M. Dyck, Kitt Peak Nat. Observ., private communication (1969).

Englehard, E.

Fedorenko, L. U.

E. A. Gurtovenko, L. U. Fedorenko, Solar Phys. 6, 465 (1969).
[CrossRef]

Fujiwara, S.

S. Fujiwara, Y. Iguchi, J. Opt. Soc. Amer. 58, 361 (1968).
[CrossRef]

Gallaway, W. S.

Gerasimov, F. M.

E. A. Yakovlev, F. M. Gerasimov, Opt. Spektrosk. 10, 104 (1961) [Opt. Spectrosc. 10, 50 (1961)].

Gurtovenko, E. A.

E. A. Gurtovenko, L. U. Fedorenko, Solar Phys. 6, 465 (1969).
[CrossRef]

Hyder, C. L.

C. L. Hyder, Sacramento Peak Observ., Solar Research Note No. 24 (1966).

Iguchi, Y.

S. Fujiwara, Y. Iguchi, J. Opt. Soc. Amer. 58, 361 (1968).
[CrossRef]

Jones, R. V.

R. V. Jones, J. C. S. Richards, Proc. Roy. Soc. (London) A225, 122 (1954).

Madden, R. P.

R. P. Madden, J. Strong, in Concepts of Classical OpticsJ. Strong, ed. (Freeman, San Francisco, 1958), Appendix P.

Mielenz, K. D.

Nefflen, K. F.

Nieuwenhuijzen, H.

H. G. van Bueren, H. Nieuwenhuijzen, Bull. Astron. Inst. Neth. 18, 170 (1966).

Palmer, C. H.

C. H. Palmer, J. Opt. Soc. Amer. 51, 1438 (1961).
[CrossRef]

C. H. Palmer, J. Opt. Soc. Amer. 46, 50 (1956).
[CrossRef]

C. H. Palmer, J. Opt. Soc. Amer. 42, 269 (1952).
[CrossRef]

Pierce, A. K.

A. K. Pierce, Appl. Opt. 3, 1337 (1964).
[CrossRef]

A. K. Pierce, J. Opt. Soc. Amer. 47, 6 (1957).
[CrossRef]

Rayleigh,

Rayleigh, Phil. Mag. 14, 60 (1907).

Richards, J. C. S.

R. V. Jones, J. C. S. Richards, Proc. Roy. Soc. (London) A225, 122 (1954).

Rowley, W. R. C.

Stewart, J. E.

Stroke, G. W.

G. W. Stroke, Rev. Opt. 39, 291 (1960).

G. W. Stroke, Handbuch der Physik (Springer, Berlin, 1967), Vol. 29, pp. 426–735.
[CrossRef]

Strong, J.

R. P. Madden, J. Strong, in Concepts of Classical OpticsJ. Strong, ed. (Freeman, San Francisco, 1958), Appendix P.

Twersky, V.

V. Twersky, J. Res. Nat. Bur. Stand. 64D, 715 (1960).

van Bueren, H. G.

H. G. van Bueren, H. Nieuwenhuijzen, Bull. Astron. Inst. Neth. 18, 170 (1966).

Wilson, D. C.

Wood, R. W.

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

R. W. Wood, Phil. Mag. 23, 310 (1912).

R. W. Wood, Phil. Mag. 4, 396 (1902).

Yakovlev, E. A.

E. A. Yakovlev, Opt. Spektrosk. 19, 417 (1965) [Opt. Spectrosc. 19, 233 (1965)].

E. A. Yakovlev, F. M. Gerasimov, Opt. Spektrosk. 10, 104 (1961) [Opt. Spectrosc. 10, 50 (1961)].

Appl. Opt. (3)

Bull. Astron. Inst. Neth. (1)

H. G. van Bueren, H. Nieuwenhuijzen, Bull. Astron. Inst. Neth. 18, 170 (1966).

Compt. Rend. Acad. Sci. Paris (1)

P. Bousquet, Compt. Rend. Acad. Sci. Paris 257, 80 (1963).

Information Sheet FT4354 (1)

Polaroid Corp., Information Sheet FT4354 (1967).

J. Opt. Soc. Amer. (5)

A. K. Pierce, J. Opt. Soc. Amer. 47, 6 (1957).
[CrossRef]

S. Fujiwara, Y. Iguchi, J. Opt. Soc. Amer. 58, 361 (1968).
[CrossRef]

C. H. Palmer, J. Opt. Soc. Amer. 42, 269 (1952).
[CrossRef]

C. H. Palmer, J. Opt. Soc. Amer. 46, 50 (1956).
[CrossRef]

C. H. Palmer, J. Opt. Soc. Amer. 51, 1438 (1961).
[CrossRef]

J. Res. Nat. Bur. Stand. (1)

V. Twersky, J. Res. Nat. Bur. Stand. 64D, 715 (1960).

Opt. Spektrosk. (2)

E. A. Yakovlev, Opt. Spektrosk. 19, 417 (1965) [Opt. Spectrosc. 19, 233 (1965)].

E. A. Yakovlev, F. M. Gerasimov, Opt. Spektrosk. 10, 104 (1961) [Opt. Spectrosc. 10, 50 (1961)].

Phil. Mag. (3)

Rayleigh, Phil. Mag. 14, 60 (1907).

R. W. Wood, Phil. Mag. 4, 396 (1902).

R. W. Wood, Phil. Mag. 23, 310 (1912).

Phys. Rev. (1)

R. W. Wood, Phys. Rev. 48, 928 (1935).
[CrossRef]

Proc. Roy. Soc. (London) (1)

R. V. Jones, J. C. S. Richards, Proc. Roy. Soc. (London) A225, 122 (1954).

Rev. Opt. (1)

G. W. Stroke, Rev. Opt. 39, 291 (1960).

Sacramento Peak Observ. (1)

C. L. Hyder, Sacramento Peak Observ., Solar Research Note No. 24 (1966).

Solar Phys. (1)

E. A. Gurtovenko, L. U. Fedorenko, Solar Phys. 6, 465 (1969).
[CrossRef]

Other (5)

H. M. Dyck, Kitt Peak Nat. Observ., private communication (1969).

H. W. Babcock, Mt. Wilson and Palomar Observatories, private correspondence (1969).

J. W. Brault, Kitt Peak Nat. Observ., private communication (1969).

G. W. Stroke, Handbuch der Physik (Springer, Berlin, 1967), Vol. 29, pp. 426–735.
[CrossRef]

R. P. Madden, J. Strong, in Concepts of Classical OpticsJ. Strong, ed. (Freeman, San Francisco, 1958), Appendix P.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Linear polarization transmission ratio I/I, as a function of grating angle for the second and third diffraction orders. Wood’s anomalies are indicated.

Fig. 2
Fig. 2

Linear polarization transmission ratio I/I, as a function of grating angle for the fourth, fifth, and sixth diffraction orders. Wood’s anomalies are indicated.

Fig. 3
Fig. 3

Linear polarization transmission ratio I/I, as a function of wavelength for the first, third, fourth, fifth, and sixth diffraction orders.

Fig. 4
Fig. 4

Photoelectric tracings (intensity as a function of wavelength) of the solar absorption spectrum made across Wood’s anomalies. Each of the six different wavelength regions shown was scanned twice, in parallel (above) and perpendicular (below) polarized light. The horizontal line represents a scale of 1.0 nm, except C where the line represents 2.0 nm. Wavelengths increase to the right. Arrows identify solar absorption features. A, 539.147 nm, grating angle = 41°10′, n/k = 4/1; B, 462.505 nm, angle = 44°54′, n/k = 5/1; C, 643.908 nm, angle = 11°21′, n/k = 1/2; D, 537.371 nm, angle = 19°09′, n/k = 2/2; E, 460.067 nm, angle = 8°04′, n/k = 1/3; F, 404.583 nm, angle = 14°14′, n/k = 2/3.

Fig. 5
Fig. 5

Instrumental profile for polarized light is shown. Photoelectric scan in the fourth order of the 632.8-nm laser emission line for the incident electric vector parallel and perpendicular to the slit is given. Wavelength increases to the right. The scale shown below the center of the profile is 5.0-pm wavelengths.

Fig. 6
Fig. 6

Linear polarization transmission ratio I/I, as a function of λ/(d cosθ) for orders 2 and 3.

Fig. 7
Fig. 7

Linear polarization transmission ratio I/I, as a function of λ/(d cosθ) for orders 4, 5, and 6.

Tables (2)

Tables Icon

Table I The Predicted Wavelength for the Rayleigh Point Compared with the Observed Wavelength

Tables Icon

Table II The Large Peak Polarizations Apparently Unrelated to the Wood’s Anomalies

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d cos θ ,
T λ 1 = I λ 1 / I λ 1 ,
λ = 0.7 d cos θ ,

Metrics