Abstract

The pinhole camera may often be overlooked because of its apparent simplicity. However, it is a useful and practical device which offers freedom from distortion and virtually infinite depth of field. Its astigmatism can be corrected by proper choice of aperture, and its angular field can be made to exceed 90°. With modern light sources, films, and detectors, even the pinhole’s low aperture need not be an important limitation.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Mach, The Principles of Physical Optics (Dover, New York, orig. publ. 1926).
  2. P. A. Newman, V. E. Rible, Appl. Opt. 5, 1225 (1966).
    [CrossRef] [PubMed]
  3. J. M. Fjeld, J. Soc. Motion Pict. Telev. Eng. 74, 320 (1965).
  4. A. H. Gallas, C. A. Gilbert, A. B. Hitterdal, J. Soc. Motion Pict. Telev. Eng. 74, 321 (1965).
  5. M. J. Bernstein, F. Hai, Rev. Sci. Instrum. 41, 1843 (1970), and references therein.
    [CrossRef]
  6. J. H. Waddell, Res./Development 14, 26 (1963).
  7. E. W. H. Selwyn, Photogr. J. 90B, 47 (1950).
  8. L. C. Martin, Technical Optics (Pitman, New York, 1959), Vol. 1, pp. 90–91.
  9. A. C. Hardy, F. Perrin, The Principles of Optics (McGraw-Hill, New York, 1932), pp. 124–126.
  10. R. Kingslake, Lenses in Photography, rev. ed. (A. S. Barnes and Co., New York, 1963), pp. 60–62.
  11. G. O. Reynolds, J. H. Ward, Soc. Photo-Optical Instrum. Eng. J. 5, 3 (1966); K. Sayanagi, J. Opt. Soc. Am. 57, 1091 (1967).
    [CrossRef]
  12. R. E. Swing, D. P. Rooney, J. Opt. Soc. Am. 58, 629 (1968).
    [CrossRef]
  13. R. S. Longhurst, Geometrical and Physical Optics, 2nd ed. (Wiley, New York, 1967).
  14. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), pp. 25–27.
  15. M. Young, B. Faulkner, J. Cole, J. Opt. Soc. Am. 60, 137 (1970).
    [CrossRef]

1970

M. J. Bernstein, F. Hai, Rev. Sci. Instrum. 41, 1843 (1970), and references therein.
[CrossRef]

M. Young, B. Faulkner, J. Cole, J. Opt. Soc. Am. 60, 137 (1970).
[CrossRef]

1968

1966

G. O. Reynolds, J. H. Ward, Soc. Photo-Optical Instrum. Eng. J. 5, 3 (1966); K. Sayanagi, J. Opt. Soc. Am. 57, 1091 (1967).
[CrossRef]

P. A. Newman, V. E. Rible, Appl. Opt. 5, 1225 (1966).
[CrossRef] [PubMed]

1965

J. M. Fjeld, J. Soc. Motion Pict. Telev. Eng. 74, 320 (1965).

A. H. Gallas, C. A. Gilbert, A. B. Hitterdal, J. Soc. Motion Pict. Telev. Eng. 74, 321 (1965).

1963

J. H. Waddell, Res./Development 14, 26 (1963).

1950

E. W. H. Selwyn, Photogr. J. 90B, 47 (1950).

Bernstein, M. J.

M. J. Bernstein, F. Hai, Rev. Sci. Instrum. 41, 1843 (1970), and references therein.
[CrossRef]

Cole, J.

Faulkner, B.

Fjeld, J. M.

J. M. Fjeld, J. Soc. Motion Pict. Telev. Eng. 74, 320 (1965).

Gallas, A. H.

A. H. Gallas, C. A. Gilbert, A. B. Hitterdal, J. Soc. Motion Pict. Telev. Eng. 74, 321 (1965).

Gilbert, C. A.

A. H. Gallas, C. A. Gilbert, A. B. Hitterdal, J. Soc. Motion Pict. Telev. Eng. 74, 321 (1965).

Hai, F.

M. J. Bernstein, F. Hai, Rev. Sci. Instrum. 41, 1843 (1970), and references therein.
[CrossRef]

Hardy, A. C.

A. C. Hardy, F. Perrin, The Principles of Optics (McGraw-Hill, New York, 1932), pp. 124–126.

Hitterdal, A. B.

A. H. Gallas, C. A. Gilbert, A. B. Hitterdal, J. Soc. Motion Pict. Telev. Eng. 74, 321 (1965).

Kingslake, R.

R. Kingslake, Lenses in Photography, rev. ed. (A. S. Barnes and Co., New York, 1963), pp. 60–62.

Longhurst, R. S.

R. S. Longhurst, Geometrical and Physical Optics, 2nd ed. (Wiley, New York, 1967).

Mach, E.

E. Mach, The Principles of Physical Optics (Dover, New York, orig. publ. 1926).

Martin, L. C.

L. C. Martin, Technical Optics (Pitman, New York, 1959), Vol. 1, pp. 90–91.

Newman, P. A.

O’Neill, E. L.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), pp. 25–27.

Perrin, F.

A. C. Hardy, F. Perrin, The Principles of Optics (McGraw-Hill, New York, 1932), pp. 124–126.

Reynolds, G. O.

G. O. Reynolds, J. H. Ward, Soc. Photo-Optical Instrum. Eng. J. 5, 3 (1966); K. Sayanagi, J. Opt. Soc. Am. 57, 1091 (1967).
[CrossRef]

Rible, V. E.

Rooney, D. P.

Selwyn, E. W. H.

E. W. H. Selwyn, Photogr. J. 90B, 47 (1950).

Swing, R. E.

Waddell, J. H.

J. H. Waddell, Res./Development 14, 26 (1963).

Ward, J. H.

G. O. Reynolds, J. H. Ward, Soc. Photo-Optical Instrum. Eng. J. 5, 3 (1966); K. Sayanagi, J. Opt. Soc. Am. 57, 1091 (1967).
[CrossRef]

Young, M.

Appl. Opt.

J. Opt. Soc. Am.

J. Soc. Motion Pict. Telev. Eng.

J. M. Fjeld, J. Soc. Motion Pict. Telev. Eng. 74, 320 (1965).

A. H. Gallas, C. A. Gilbert, A. B. Hitterdal, J. Soc. Motion Pict. Telev. Eng. 74, 321 (1965).

Photogr. J.

E. W. H. Selwyn, Photogr. J. 90B, 47 (1950).

Res./Development

J. H. Waddell, Res./Development 14, 26 (1963).

Rev. Sci. Instrum.

M. J. Bernstein, F. Hai, Rev. Sci. Instrum. 41, 1843 (1970), and references therein.
[CrossRef]

Soc. Photo-Optical Instrum. Eng. J.

G. O. Reynolds, J. H. Ward, Soc. Photo-Optical Instrum. Eng. J. 5, 3 (1966); K. Sayanagi, J. Opt. Soc. Am. 57, 1091 (1967).
[CrossRef]

Other

E. Mach, The Principles of Physical Optics (Dover, New York, orig. publ. 1926).

R. S. Longhurst, Geometrical and Physical Optics, 2nd ed. (Wiley, New York, 1967).

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), pp. 25–27.

L. C. Martin, Technical Optics (Pitman, New York, 1959), Vol. 1, pp. 90–91.

A. C. Hardy, F. Perrin, The Principles of Optics (McGraw-Hill, New York, 1932), pp. 124–126.

R. Kingslake, Lenses in Photography, rev. ed. (A. S. Barnes and Co., New York, 1963), pp. 60–62.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Pinhole camera focused on a distant point: f is the focal length, s the pinhole radius, and r the radius of the image.

Fig. 2
Fig. 2

Pinhole camera focused on a nearby point: p and q are object and image distances, s the pinhole radius, and g the diameter of the geometrical shadow.

Fig. 3
Fig. 3

Experimental pinhole camera. Quartz–iodine lamp Q is filtered by water tank WT and heat-absorbing filter HF. Beam is condensed by lens L onto ground glass GG, which illuminates target T through filter F. Pinhole PH casts image onto screen S. Conjugates are p and q.

Fig. 4
Fig. 4

Resolution limit in units of g vs focal length in units of s2/λ. Resolution limit is smaller than geometrical shadow when f = s2/λ and pinhole occupies single Fresnel zone. (Because of the definition of f, pinhole radius increases to the left.)

Fig. 5
Fig. 5

Images of bar target taken at unit magnification. Upper pictures have optimum pinhole size; lower, two to three times larger. Note spurious resolution and astigmatism.

Fig. 6
Fig. 6

Normalized resolution limit as in Fig. 4. Target is horizontally off axis. Crosses represent vertical bars; open circles, horizontal bars. Astigmatism is absent for a small range of normalized focal lengths.

Fig. 7
Fig. 7

Snapshot taken with pinhole camera to show soft focus and large depth of field.

Metrics