Abstract

A ground-based method of measuring atmospheric vertical temperature profiles using Raman backscatter from N2 is discussed. Experimental measurement of temperature fluctuations at tower heights is described.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Derr, C. G. Little, Appl. Opt. 9, 1976 (1970).
    [CrossRef] [PubMed]
  2. E. W. Barrett, O. Ben-Dov, J. Appl. Meteorol. 6, 500 (1967).
    [CrossRef]
  3. M. R. Bowman, A. J. Gibson, M. C. W. Sanford, Nature 221, 456 (1969).
    [CrossRef]
  4. J. Cooney, J. Appl. Meteorol. 9, 182 (1970).
    [CrossRef]
  5. S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1970).
    [CrossRef]
  6. T. Kobayasi, H. Inaba, Nature 224, 170 (1969).
    [CrossRef] [PubMed]
  7. T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
    [CrossRef]
  8. L. Elterman, J. Geophys. Res. 58, 519 (1953).
    [CrossRef]
  9. L. Elterman, J. Geophys. Res. 59, 351 (1954).
    [CrossRef]
  10. E. R. Westwater, Ph.D. Thesis, University of Colorado (1970).

1970 (4)

J. Cooney, J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1970).
[CrossRef]

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

V. E. Derr, C. G. Little, Appl. Opt. 9, 1976 (1970).
[CrossRef] [PubMed]

1969 (2)

T. Kobayasi, H. Inaba, Nature 224, 170 (1969).
[CrossRef] [PubMed]

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, Nature 221, 456 (1969).
[CrossRef]

1967 (1)

E. W. Barrett, O. Ben-Dov, J. Appl. Meteorol. 6, 500 (1967).
[CrossRef]

1954 (1)

L. Elterman, J. Geophys. Res. 59, 351 (1954).
[CrossRef]

1953 (1)

L. Elterman, J. Geophys. Res. 58, 519 (1953).
[CrossRef]

Barrett, E. W.

E. W. Barrett, O. Ben-Dov, J. Appl. Meteorol. 6, 500 (1967).
[CrossRef]

Ben-Dov, O.

E. W. Barrett, O. Ben-Dov, J. Appl. Meteorol. 6, 500 (1967).
[CrossRef]

Bowman, M. R.

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, Nature 221, 456 (1969).
[CrossRef]

Cooney, J.

J. Cooney, J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

Derr, V. E.

Elterman, L.

L. Elterman, J. Geophys. Res. 59, 351 (1954).
[CrossRef]

L. Elterman, J. Geophys. Res. 58, 519 (1953).
[CrossRef]

Gibson, A. J.

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, Nature 221, 456 (1969).
[CrossRef]

Inaba, H.

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

T. Kobayasi, H. Inaba, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Kobayasi, T.

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

T. Kobayasi, H. Inaba, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Lawrence, J. D.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1970).
[CrossRef]

Little, C. G.

McCormick, M. P.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1970).
[CrossRef]

Melfi, S. H.

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1970).
[CrossRef]

Sanford, M. C. W.

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, Nature 221, 456 (1969).
[CrossRef]

Westwater, E. R.

E. R. Westwater, Ph.D. Thesis, University of Colorado (1970).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. H. Melfi, J. D. Lawrence, M. P. McCormick, Appl. Phys. Lett. 15, 295 (1970).
[CrossRef]

T. Kobayasi, H. Inaba, Appl. Phys. Lett. 17, 139 (1970).
[CrossRef]

J. Appl. Meteorol. (2)

E. W. Barrett, O. Ben-Dov, J. Appl. Meteorol. 6, 500 (1967).
[CrossRef]

J. Cooney, J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

J. Geophys. Res. (2)

L. Elterman, J. Geophys. Res. 58, 519 (1953).
[CrossRef]

L. Elterman, J. Geophys. Res. 59, 351 (1954).
[CrossRef]

Nature (2)

M. R. Bowman, A. J. Gibson, M. C. W. Sanford, Nature 221, 456 (1969).
[CrossRef]

T. Kobayasi, H. Inaba, Nature 224, 170 (1969).
[CrossRef] [PubMed]

Other (1)

E. R. Westwater, Ph.D. Thesis, University of Colorado (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Raman backscatter intensity vs temperature.

Fig. 2
Fig. 2

Raman backscatter intensity vs temperature.

Fig. 3
Fig. 3

Raman backscatter intensity vs temperature.

Fig. 4
Fig. 4

Cross-correlation of Raman backscatter intensity and temperature.

Tables (3)

Tables Icon

Table I Atmospheric Pressure Measurements at Denver, Colo.

Tables Icon

Table II Signal Intensity Required for Temperature Measurement

Tables Icon

Table III Lidar Characteristics

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( h ) = ρ ( h ) T ( h ) R / M ,
Δ P ( h ) / P ( h ) = [ Δ ρ ( h ) / ρ ( h ) ] + [ Δ T ( h ) / T ( h ) ] .
Δ ρ ( h ) / ρ ( h ) = - Δ T ( h ) / T ( h ) .
Δ S N 2 ( h ) / S N 2 ( h ) = - Δ T ( h ) / T ( h ) ,
T ( h ) = P N 2 ( h ) / [ ρ N 2 ( h ) R / M ] = [ P N 2 ( h 0 ) - g h 0 h ρ N 2 ( z ) d z ] [ ρ N 2 ( h ) R / M ] ,
N r = ( N t η t σ N 2 ρ N 2 * L A r η r η q / h 2 ) exp h 0 h - ( B t + B r ) d z ,
h 0 h ρ N 2 ( z ) d z .
( Var T ) 1 2 / T ¯ = [ ( Var P N 2 / P ¯ N 2 2 ) + ( Var ρ N 2 / ρ ¯ N 2 2 ) ] 1 2 .
( Var T / T ¯ 2 ) = ( Var ρ N 2 / ρ ¯ N 2 2 ) + ( Var P N 2 / P ¯ N 2 2 ) - [ 2 Cov ( P N 2 , ρ N 2 ) / ( P ¯ N 2 ρ ¯ N 2 ) ] .
( Var T ) 1 2 / T ¯ = { 2 Var [ P P ( o ) ] / P ¯ 2 } 1 2

Metrics