Abstract

A knowledge of the emissivity of a cavity radiator may be deduced from reflectance measurements, but these may be difficult to make if the cavity has a small aperture and low reflectance. The use of a He–Ne laser as a source facilitates such measurements. Results are presented for one ceramic and three metallic cavities that have been used in photometric and spectroradoimetric standards work. An integrating sphere method appears more satisfactory than a goniophotometric approach.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. C. Jones, J. S. Preston, NPL Notes on Applied Science 24, (HMSO, 1969), pp. 12–16.
  2. J. R. Moore, Colour Measurement in Industry [The Colour Group (G.B.), 1967], pp. 123–131.
  3. J. C. De Vos, Physica 20, 669 (1954).
    [CrossRef]
  4. A. Gouffé, Rev. Opt. 24, (1945).
  5. T. J. Quinn, Brit. J. Appl. Phys. 18, 1105 (1967).
    [CrossRef]
  6. C. L. Sanders, Metrologia 3, 119 (1967).
    [CrossRef]
  7. D. Paulmier, J. Gosse, Compt. Rend. 256, 381 (1963).
  8. T. J. Quinn, C. R. Barber, Metrologia 3, 19 (1967).
    [CrossRef]
  9. S. H. Lin, E. M. Sparrow, Appl. Opt. 4, 277 (1965).
    [CrossRef]
  10. R. P. Heinisch, R. N. Schmidt, Appl. Opt. 9, 1920 (1970).
    [CrossRef] [PubMed]
  11. J. W. T. Walsh, Photometry (Constable, London, 1958), p. 420.
  12. B. J. Hisdahl, J. Opt. Soc. Am. 55, 1122 (1965).
    [CrossRef]
  13. H. F. Meacock, F. A. Garforth, R. G. Shrubsall, J. Sci. Instrum. 39, 384 (1962).
    [CrossRef]
  14. We later examined the tuft from a lamp that had operated for about 100 h. Its reflectance was considerably higher (15%), but the minimal effects of tube temperature gradients still apply. Figure 11 shows the visual comparison of a new tuft (right) and used tuft (left).

1970 (1)

1967 (3)

T. J. Quinn, C. R. Barber, Metrologia 3, 19 (1967).
[CrossRef]

T. J. Quinn, Brit. J. Appl. Phys. 18, 1105 (1967).
[CrossRef]

C. L. Sanders, Metrologia 3, 119 (1967).
[CrossRef]

1965 (2)

1963 (1)

D. Paulmier, J. Gosse, Compt. Rend. 256, 381 (1963).

1962 (1)

H. F. Meacock, F. A. Garforth, R. G. Shrubsall, J. Sci. Instrum. 39, 384 (1962).
[CrossRef]

1954 (1)

J. C. De Vos, Physica 20, 669 (1954).
[CrossRef]

1945 (1)

A. Gouffé, Rev. Opt. 24, (1945).

Barber, C. R.

T. J. Quinn, C. R. Barber, Metrologia 3, 19 (1967).
[CrossRef]

De Vos, J. C.

J. C. De Vos, Physica 20, 669 (1954).
[CrossRef]

Garforth, F. A.

H. F. Meacock, F. A. Garforth, R. G. Shrubsall, J. Sci. Instrum. 39, 384 (1962).
[CrossRef]

Gosse, J.

D. Paulmier, J. Gosse, Compt. Rend. 256, 381 (1963).

Gouffé, A.

A. Gouffé, Rev. Opt. 24, (1945).

Heinisch, R. P.

Hisdahl, B. J.

Jones, O. C.

O. C. Jones, J. S. Preston, NPL Notes on Applied Science 24, (HMSO, 1969), pp. 12–16.

Lin, S. H.

Meacock, H. F.

H. F. Meacock, F. A. Garforth, R. G. Shrubsall, J. Sci. Instrum. 39, 384 (1962).
[CrossRef]

Moore, J. R.

J. R. Moore, Colour Measurement in Industry [The Colour Group (G.B.), 1967], pp. 123–131.

Paulmier, D.

D. Paulmier, J. Gosse, Compt. Rend. 256, 381 (1963).

Preston, J. S.

O. C. Jones, J. S. Preston, NPL Notes on Applied Science 24, (HMSO, 1969), pp. 12–16.

Quinn, T. J.

T. J. Quinn, C. R. Barber, Metrologia 3, 19 (1967).
[CrossRef]

T. J. Quinn, Brit. J. Appl. Phys. 18, 1105 (1967).
[CrossRef]

Sanders, C. L.

C. L. Sanders, Metrologia 3, 119 (1967).
[CrossRef]

Schmidt, R. N.

Shrubsall, R. G.

H. F. Meacock, F. A. Garforth, R. G. Shrubsall, J. Sci. Instrum. 39, 384 (1962).
[CrossRef]

Sparrow, E. M.

Walsh, J. W. T.

J. W. T. Walsh, Photometry (Constable, London, 1958), p. 420.

Appl. Opt. (2)

Brit. J. Appl. Phys. (1)

T. J. Quinn, Brit. J. Appl. Phys. 18, 1105 (1967).
[CrossRef]

Compt. Rend. (1)

D. Paulmier, J. Gosse, Compt. Rend. 256, 381 (1963).

J. Opt. Soc. Am. (1)

J. Sci. Instrum. (1)

H. F. Meacock, F. A. Garforth, R. G. Shrubsall, J. Sci. Instrum. 39, 384 (1962).
[CrossRef]

Metrologia (2)

T. J. Quinn, C. R. Barber, Metrologia 3, 19 (1967).
[CrossRef]

C. L. Sanders, Metrologia 3, 119 (1967).
[CrossRef]

Physica (1)

J. C. De Vos, Physica 20, 669 (1954).
[CrossRef]

Rev. Opt. (1)

A. Gouffé, Rev. Opt. 24, (1945).

Other (4)

O. C. Jones, J. S. Preston, NPL Notes on Applied Science 24, (HMSO, 1969), pp. 12–16.

J. R. Moore, Colour Measurement in Industry [The Colour Group (G.B.), 1967], pp. 123–131.

J. W. T. Walsh, Photometry (Constable, London, 1958), p. 420.

We later examined the tuft from a lamp that had operated for about 100 h. Its reflectance was considerably higher (15%), but the minimal effects of tube temperature gradients still apply. Figure 11 shows the visual comparison of a new tuft (right) and used tuft (left).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Platinum/rhodium blackbody radiators.

Fig. 2
Fig. 2

(a) Tungsten tube as used in Quinn-Barber lamp; (b) thoria tube as used in the primary standard of light.

Fig. 3
Fig. 3

Apparatus for measurement of total reflected flux from a cavity illuminated with f/11 cone of light.

Fig. 4
Fig. 4

Apparatus for measurement of angular variation of reflectance from cavities.

Fig. 5
Fig. 5

Percentage change in reflectance of beam splitter with different incident angles, relative to value at 45° incidence.

Fig. 6
Fig. 6

Reflectance of platinum/rhodium blackbody, vertical and horizontal aperture. These distributions are approximately symmetrical about 0°.

Fig. 7
Fig. 7

Distribution in illuminance of light reflected from tungsten tubes, as deduced from densitometer scans of photographic plates.

Fig. 8
Fig. 8

Reflectance of tungsten tube 8(b) scanned across the aperture.

Fig. 9
Fig. 9

Variation in reflectance of tube 8(b) with angle. The dip is caused by the spike in the reflected light distribution crossing the entrance port of the integrating sphere.

Fig. 10
Fig. 10

Spectral reflectance of tungsten wire tuft.

Fig. 11
Fig. 11

Photograph of new tungsten tuft (right) and used tuft (left).

Tables (2)

Tables Icon

Table I First Series of Measurements

Tables Icon

Table II Second Series of Measurements

Metrics