Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Luneburg, Mathematical Analysis of Binocular Vision (Princeton U. P., Princeton, 1947).
  2. K. N. Ogle, The Eye, Hugh Davson, Ed. (AcademicNew York, 1962), Vol. 4.
  3. R. Meier, J. Opt. Soc. Am. 55, 987 (1965).
    [CrossRef]
  4. E. B. Champagne, J. Opt. Soc. Am. 57, 51 (1967).
    [CrossRef]
  5. J. M. Foley, Perception and Psychophysics 2, 605 (1967).
    [CrossRef]
  6. H. Wallach, C. Zuckerman, Am. J. Psych. 76, 404 (1963).
    [CrossRef]

1967 (2)

E. B. Champagne, J. Opt. Soc. Am. 57, 51 (1967).
[CrossRef]

J. M. Foley, Perception and Psychophysics 2, 605 (1967).
[CrossRef]

1965 (1)

1963 (1)

H. Wallach, C. Zuckerman, Am. J. Psych. 76, 404 (1963).
[CrossRef]

Champagne, E. B.

Foley, J. M.

J. M. Foley, Perception and Psychophysics 2, 605 (1967).
[CrossRef]

Luneburg, R. K.

R. K. Luneburg, Mathematical Analysis of Binocular Vision (Princeton U. P., Princeton, 1947).

Meier, R.

Ogle, K. N.

K. N. Ogle, The Eye, Hugh Davson, Ed. (AcademicNew York, 1962), Vol. 4.

Wallach, H.

H. Wallach, C. Zuckerman, Am. J. Psych. 76, 404 (1963).
[CrossRef]

Zuckerman, C.

H. Wallach, C. Zuckerman, Am. J. Psych. 76, 404 (1963).
[CrossRef]

Am. J. Psych. (1)

H. Wallach, C. Zuckerman, Am. J. Psych. 76, 404 (1963).
[CrossRef]

J. Opt. Soc. Am. (2)

Perception and Psychophysics (1)

J. M. Foley, Perception and Psychophysics 2, 605 (1967).
[CrossRef]

Other (2)

R. K. Luneburg, Mathematical Analysis of Binocular Vision (Princeton U. P., Princeton, 1947).

K. N. Ogle, The Eye, Hugh Davson, Ed. (AcademicNew York, 1962), Vol. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Bipolar coordinate system locates point P by specification of α, β, θ.

Fig. 2
Fig. 2

Modified bipolar coordinates γ and ϕ in the plane of elevation of point P (α and β are close to π/2).

Fig. 3
Fig. 3

A point P has an angle of convergence γ. When a pair of prisms is used as pictured, the angle of convergence is increased to γ′, and the apparent position is P′.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 1 2 ( β - α ) ,
γ = π - α - β ,
Γ - δ γ = δ α + δ β
δ ϕ = 1 2 ( δ β - δ α ) .
s = D ,
d = ( Γ / i ) D 2 ,
D = i / γ .
d / s = d / s .
d / s = Γ / γ
d / s = Γ / γ ,
= M ang ,
Γ = M ang Γ .
γ = i / R i ,

Metrics