Abstract

Four different methods for storing a three-dimensional image are examined. The efficiency of each method, expressed in terms of the space–bandwidth product of the stored data, is calculated.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
    [CrossRef]
  2. See, for example, C. B. Burkhardt, J. Opt. Soc. Am. 58, 71 (1968) for a recent treatment of this rather old technique.
    [CrossRef]
  3. A. C. Traub, Appl. Opt. 6, 1085 (1967).
    [CrossRef] [PubMed]
  4. E. G. Rawson, Appl. Opt. 7, 1505 (1968).
    [CrossRef] [PubMed]
  5. M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).
  6. M. C. King, D. H. Berry, J. Opt. Soc. Am. 60, 709 (1970).
    [CrossRef]
  7. See A. Macovski, J. Opt. Soc. Am. 60, 21 (1970) for an extended discussion of holographic data storage requirements.
    [CrossRef]

1970

1969

M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).

1968

1967

1965

J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Berry, D. H.

M. C. King, D. H. Berry, J. Opt. Soc. Am. 60, 709 (1970).
[CrossRef]

M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).

Burkhardt, C. B.

King, M. C.

M. C. King, D. H. Berry, J. Opt. Soc. Am. 60, 709 (1970).
[CrossRef]

M. C. King, D. H. Berry, J. Opt. Soc. Am. 59, 1524 (1969).

Macovski, A.

Rawson, E. G.

Traub, A. C.

Winthrop, J. T.

J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Worthington, C. R.

J. T. Winthrop, C. R. Worthington, Phys. Lett. 15, 124 (1965).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Basic model for analysis. The distance d is from the aperture plane to the midpoint of the object.

Fig. 2
Fig. 2

Diagram for determining the number of data-collecting positions in multiple photography.

Fig. 3
Fig. 3

Method of integral photography.

Fig. 4
Fig. 4

Graph of Eqs. (15)(17) for σ = 1.

Fig. 5
Fig. 5

Graph of Eqs. (15)(17) for σ = 0.1.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

d 1 A ,             d 1 D ,             d 1 L .
W = 2 sin 1 2 θ / λ L / λ d ,
( SW ) H = L A / λ d .
Δ ( x ) = ( λ d / l ) [ ( d + D ) / D ] .
n 1 = [ ( A - l ) / Δ x ] + 1 ,
n 1 = { ( A - l ) l / λ d [ 1 + ( d / D ) ] } + 1.
n 2 = ( D / λ ) ( l / d ) 2 .
n 3 = L l / λ d .
( SW ) M = n 1 n 2 n 3 = ( { ( A - l ) l / λ d [ 1 + ( d / D ) ] } + 1 ) × [ ( D / λ ) ( l / d ) 2 ] ( L l / λ d ) .
( SW ) I = L A / λ d .
( SW ) S = ( L l / λ d ) [ ( D / λ ) ( l 2 / d 2 ) ] = L D / λ 2 ( l / d ) 3 .
σ = l / A ,
ρ = ( D / λ ) ( A / d ) 2 = D / Δ r ,
Δ r = λ ( d / A ) 2 ,
β H = β I = ( SW ) H / ( SW ) S = 1 / ρ σ 3 .
β M = ( SW ) M / ( SW ) S = ρ σ ( 1 - σ ) + 1.
β S = 1.

Metrics