Abstract

By conventional reactive evaporation techniques, films with a certain deviation from stochiometric composition and, therefore, increased absorptance and dielectric losses were obtained. By ionization of the residual gas a considerable increase of reactivity has been achieved. The construction of a discharge tube with a region of high current density for ionization is described. The tube was arranged inside a bell jar. The ionized gas emerged from a nozzle in the wall of the tube directly into the high vacuum region. Production parameters for SiO2, SiOxNy, and TiO2 films were evaluated. On unheated substrates SiO2 films, which are practically free of absorptance down to 190 nm, and TiO2 films with refractive indices up to 2.3, were obtained.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Auwärter, Schweizer Patentschrift32 22 65, Kl. 44b (1957).
  2. E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
    [Crossref]
  3. E. Ritter, Opt. Acta 9, 197 (1962).
    [Crossref]
  4. Y. Nishimura, T. Inagaki, H. Sasaki, Fujitsu Sci. Technol. J. 2, 87 (1966).
  5. B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).
  6. R. I. Frank, W. L. Moberg, J. Vac. Sci. Technol. 4, 133 (1967).
    [Crossref]
  7. K. E. G. Pitt, Vacuum 17, 559 (1967).
    [Crossref]
  8. G. Hass, E. Ritter, J. Vac. Sci. Technol. 4, 71 (1967).
    [Crossref]
  9. I. J. Hodgkinson, Appl. Opt. 9, 1577 (1970).
    [Crossref] [PubMed]
  10. A. P. Bradford, G. Hass, J. B. Heany, J. J. Triolo, Appl. Opt. 9, 339 (1970).
    [Crossref] [PubMed]
  11. R. A. Mickelsen, J. Appl. Phys. 39, 4594 (1968).
    [Crossref]
  12. T. Kraus, P. Rheinberger, Deutsche Patent-Auslegeschrift1 228 489, Kl. 48b-13/04 (1966).
  13. K. Kerner, Forschungsbericht BMWF-FB W 67-07 (1967).
  14. W. Heitmann, W. Saame, Techn. Bericht, FT des FTZ, A 97 TBr 1 (Okt.1970).
  15. C. M. Drum, M. J. Rand, J. Appl. Phys. 39, 4458 (1968).
    [Crossref]
  16. R. I. Frank, W. L. Moberg, J. Electrochem. Soc. 117, 524 (1970).
    [Crossref]
  17. V. Y. Doo, D. R. Kerr, D. R. Nichols, J. Electrochem. Soc. 115, 61 (1968).
    [Crossref]
  18. T. L. Chu, J. R. Szedon, C. H. Lee, J. Electrochem. Soc. 115, 318 (1968).
    [Crossref]
  19. L. F. Cordes, Appl. Phys. Lett. 11, 383 (1967).
    [Crossref]
  20. D. C. Cronemeyer, Phys. Rev. 113, 1222 (1959).
    [Crossref]
  21. V. N. Bogomolov, D. N. Mirlin, Phys. Stat. Sol. 27, 443 (1968).
    [Crossref]
  22. W. Heitmann, Appl. Opt. 10, December (1971).
    [PubMed]

1971 (1)

W. Heitmann, Appl. Opt. 10, December (1971).
[PubMed]

1970 (3)

1969 (1)

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

1968 (5)

R. A. Mickelsen, J. Appl. Phys. 39, 4594 (1968).
[Crossref]

V. Y. Doo, D. R. Kerr, D. R. Nichols, J. Electrochem. Soc. 115, 61 (1968).
[Crossref]

T. L. Chu, J. R. Szedon, C. H. Lee, J. Electrochem. Soc. 115, 318 (1968).
[Crossref]

C. M. Drum, M. J. Rand, J. Appl. Phys. 39, 4458 (1968).
[Crossref]

V. N. Bogomolov, D. N. Mirlin, Phys. Stat. Sol. 27, 443 (1968).
[Crossref]

1967 (5)

L. F. Cordes, Appl. Phys. Lett. 11, 383 (1967).
[Crossref]

K. Kerner, Forschungsbericht BMWF-FB W 67-07 (1967).

R. I. Frank, W. L. Moberg, J. Vac. Sci. Technol. 4, 133 (1967).
[Crossref]

K. E. G. Pitt, Vacuum 17, 559 (1967).
[Crossref]

G. Hass, E. Ritter, J. Vac. Sci. Technol. 4, 71 (1967).
[Crossref]

1966 (2)

Y. Nishimura, T. Inagaki, H. Sasaki, Fujitsu Sci. Technol. J. 2, 87 (1966).

E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
[Crossref]

1962 (1)

E. Ritter, Opt. Acta 9, 197 (1962).
[Crossref]

1959 (1)

D. C. Cronemeyer, Phys. Rev. 113, 1222 (1959).
[Crossref]

Auwärter, M.

M. Auwärter, Schweizer Patentschrift32 22 65, Kl. 44b (1957).

Bogomolov, V. N.

V. N. Bogomolov, D. N. Mirlin, Phys. Stat. Sol. 27, 443 (1968).
[Crossref]

Bradford, A. P.

Chu, T. L.

T. L. Chu, J. R. Szedon, C. H. Lee, J. Electrochem. Soc. 115, 318 (1968).
[Crossref]

Cordes, L. F.

L. F. Cordes, Appl. Phys. Lett. 11, 383 (1967).
[Crossref]

Cronemeyer, D. C.

D. C. Cronemeyer, Phys. Rev. 113, 1222 (1959).
[Crossref]

Doo, V. Y.

V. Y. Doo, D. R. Kerr, D. R. Nichols, J. Electrochem. Soc. 115, 61 (1968).
[Crossref]

Drum, C. M.

C. M. Drum, M. J. Rand, J. Appl. Phys. 39, 4458 (1968).
[Crossref]

Dudenhausen, B.

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

Frank, R. I.

R. I. Frank, W. L. Moberg, J. Electrochem. Soc. 117, 524 (1970).
[Crossref]

R. I. Frank, W. L. Moberg, J. Vac. Sci. Technol. 4, 133 (1967).
[Crossref]

Hass, G.

Heany, J. B.

Heitmann, W.

W. Heitmann, Appl. Opt. 10, December (1971).
[PubMed]

W. Heitmann, W. Saame, Techn. Bericht, FT des FTZ, A 97 TBr 1 (Okt.1970).

Hodgkinson, I. J.

Inagaki, T.

Y. Nishimura, T. Inagaki, H. Sasaki, Fujitsu Sci. Technol. J. 2, 87 (1966).

Kerner, K.

K. Kerner, Forschungsbericht BMWF-FB W 67-07 (1967).

Kerr, D. R.

V. Y. Doo, D. R. Kerr, D. R. Nichols, J. Electrochem. Soc. 115, 61 (1968).
[Crossref]

Kraus, T.

T. Kraus, P. Rheinberger, Deutsche Patent-Auslegeschrift1 228 489, Kl. 48b-13/04 (1966).

Lee, C. H.

T. L. Chu, J. R. Szedon, C. H. Lee, J. Electrochem. Soc. 115, 318 (1968).
[Crossref]

Mickelsen, R. A.

R. A. Mickelsen, J. Appl. Phys. 39, 4594 (1968).
[Crossref]

Mirlin, D. N.

V. N. Bogomolov, D. N. Mirlin, Phys. Stat. Sol. 27, 443 (1968).
[Crossref]

Moberg, W. L.

R. I. Frank, W. L. Moberg, J. Electrochem. Soc. 117, 524 (1970).
[Crossref]

R. I. Frank, W. L. Moberg, J. Vac. Sci. Technol. 4, 133 (1967).
[Crossref]

Möllenstedt, G.

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

Nichols, D. R.

V. Y. Doo, D. R. Kerr, D. R. Nichols, J. Electrochem. Soc. 115, 61 (1968).
[Crossref]

Nishimura, Y.

Y. Nishimura, T. Inagaki, H. Sasaki, Fujitsu Sci. Technol. J. 2, 87 (1966).

Pitt, K. E. G.

K. E. G. Pitt, Vacuum 17, 559 (1967).
[Crossref]

Rand, M. J.

C. M. Drum, M. J. Rand, J. Appl. Phys. 39, 4458 (1968).
[Crossref]

Rheinberger, P.

T. Kraus, P. Rheinberger, Deutsche Patent-Auslegeschrift1 228 489, Kl. 48b-13/04 (1966).

Ritter, E.

G. Hass, E. Ritter, J. Vac. Sci. Technol. 4, 71 (1967).
[Crossref]

E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
[Crossref]

E. Ritter, Opt. Acta 9, 197 (1962).
[Crossref]

Saame, W.

W. Heitmann, W. Saame, Techn. Bericht, FT des FTZ, A 97 TBr 1 (Okt.1970).

Sasaki, H.

Y. Nishimura, T. Inagaki, H. Sasaki, Fujitsu Sci. Technol. J. 2, 87 (1966).

Szedon, J. R.

T. L. Chu, J. R. Szedon, C. H. Lee, J. Electrochem. Soc. 115, 318 (1968).
[Crossref]

Triolo, J. J.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. F. Cordes, Appl. Phys. Lett. 11, 383 (1967).
[Crossref]

Forschungsbericht BMWF-FB W 67-07 (1)

K. Kerner, Forschungsbericht BMWF-FB W 67-07 (1967).

Fujitsu Sci. Technol. J. (1)

Y. Nishimura, T. Inagaki, H. Sasaki, Fujitsu Sci. Technol. J. 2, 87 (1966).

J. Appl. Phys. (2)

R. A. Mickelsen, J. Appl. Phys. 39, 4594 (1968).
[Crossref]

C. M. Drum, M. J. Rand, J. Appl. Phys. 39, 4458 (1968).
[Crossref]

J. Electrochem. Soc. (3)

R. I. Frank, W. L. Moberg, J. Electrochem. Soc. 117, 524 (1970).
[Crossref]

V. Y. Doo, D. R. Kerr, D. R. Nichols, J. Electrochem. Soc. 115, 61 (1968).
[Crossref]

T. L. Chu, J. R. Szedon, C. H. Lee, J. Electrochem. Soc. 115, 318 (1968).
[Crossref]

J. Vac. Sci. Technol. (3)

E. Ritter, J. Vac. Sci. Technol. 3, 225 (1966).
[Crossref]

R. I. Frank, W. L. Moberg, J. Vac. Sci. Technol. 4, 133 (1967).
[Crossref]

G. Hass, E. Ritter, J. Vac. Sci. Technol. 4, 71 (1967).
[Crossref]

Opt. Acta (1)

E. Ritter, Opt. Acta 9, 197 (1962).
[Crossref]

Phys. Rev. (1)

D. C. Cronemeyer, Phys. Rev. 113, 1222 (1959).
[Crossref]

Phys. Stat. Sol. (1)

V. N. Bogomolov, D. N. Mirlin, Phys. Stat. Sol. 27, 443 (1968).
[Crossref]

Vacuum (1)

K. E. G. Pitt, Vacuum 17, 559 (1967).
[Crossref]

Z. Angew. Phys. (1)

B. Dudenhausen, G. Möllenstedt, Z. Angew. Phys. 27, 191 (1969).

Other (3)

M. Auwärter, Schweizer Patentschrift32 22 65, Kl. 44b (1957).

T. Kraus, P. Rheinberger, Deutsche Patent-Auslegeschrift1 228 489, Kl. 48b-13/04 (1966).

W. Heitmann, W. Saame, Techn. Bericht, FT des FTZ, A 97 TBr 1 (Okt.1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Discharge tube for ionization of the residual gas. Detail 3a: enlarged middle section of the capillary with gas outlet.

Fig. 2
Fig. 2

Complete arrangement for evaporation in ionized gases: (1) gas reservoir, (2) needle valve, (3) discharge tube, (4) transformer, (5) crucible, (6) substrate.

Fig. 3
Fig. 3

Transmittance of silicon oxide films of 0.6-μm thickness on quartz glass. Upper straight line: evaporated in ionized oxygen; lower curve: without discharge.

Fig. 4
Fig. 4

Transmittance of films of 0.6-μm thickness on quartz glass: (a) SiO evaporated in ionized oxygen; (b) in neutral oxygen: (c) in neutral nitrogen; (d) SiO film produced at p < 2 × 10−6 Torr.

Fig. 5
Fig. 5

Transmittance of 0.6-μm thick films on quartz glass: (2) SiO evaporated in ionized nitrogen, (3) in neutral nitrogen, (4) SiO film, (1) film 2, heated for 9 h to 350°C in air.

Fig. 6
Fig. 6

Transmittance change of a SixNy, film evaporated in ionized nitrogen at 200 nm by heating in air to 350°C.

Fig. 7
Fig. 7

Transmittance of TiO2 films of 0.3-μm thickness on plate glass. Traced curve: evaporated in ionized oxygen; broken curve: in neutral oxygen.

Tables (1)

Tables Icon

Table I Parameters for Making SiO2, SiOxNy, and TiO2 Films

Metrics