Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Sirohi, M. A. Genshaw, J. Electrochem. Soc. 116, 910 (1969).
    [CrossRef]
  2. M. A. Genshaw, R. S. Sirohi, J. Electrochem. Soc. (accepted).
  3. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 620.
  4. D. Birchon, Optical Microscope Technique (George Newnes Ltd., London, 1961), p. 141.

1969 (1)

R. S. Sirohi, M. A. Genshaw, J. Electrochem. Soc. 116, 910 (1969).
[CrossRef]

Birchon, D.

D. Birchon, Optical Microscope Technique (George Newnes Ltd., London, 1961), p. 141.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 620.

Genshaw, M. A.

R. S. Sirohi, M. A. Genshaw, J. Electrochem. Soc. 116, 910 (1969).
[CrossRef]

M. A. Genshaw, R. S. Sirohi, J. Electrochem. Soc. (accepted).

Sirohi, R. S.

R. S. Sirohi, M. A. Genshaw, J. Electrochem. Soc. 116, 910 (1969).
[CrossRef]

M. A. Genshaw, R. S. Sirohi, J. Electrochem. Soc. (accepted).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 620.

J. Electrochem. Soc. (1)

R. S. Sirohi, M. A. Genshaw, J. Electrochem. Soc. 116, 910 (1969).
[CrossRef]

Other (3)

M. A. Genshaw, R. S. Sirohi, J. Electrochem. Soc. (accepted).

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 620.

D. Birchon, Optical Microscope Technique (George Newnes Ltd., London, 1961), p. 141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Plot of x and y for k = 1 and n = 1.50, 1.58, 2.00, 2.50.

Fig. 2
Fig. 2

Plot of x and y for low values of k(= 0.05, 0.1, 0.2, 0.25) and n = 1.50.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( 1 - k 2 ) = sin 2 θ i { 1 + [ tan 2 θ i ( cos 2 ψ - sin 2 2 ψ sin 2 Δ ) / ( 1 + cos Δ sin 2 ψ ) 2 ] } ,
2 n 2 k = sin 2 θ i tan 2 θ i sin 4 ψ sin Δ / ( 1 + cos Δ sin 2 ψ ) 2 ,
x = ( cos 2 2 ψ - sin 2 2 ψ sin 2 Δ ) / ( 1 + cos Δ sin 2 ψ ) 2
y = sin 4 ψ sin Δ / ( 1 + cos Δ sin 2 ψ ) 2 .
n 2 ( 1 - k 2 ) 2 y 2 + 4 n 2 k 2 x 2 - 4 n 2 k ( 1 - k 2 ) x y + 2 k [ n 2 ( 1 - k 2 ) - 1 ] y - 4 n 2 k 2 x = 0.
( x - 0.5 ) 2 = 0.5 y / n 2 + 0.25.
y = 4 k x + 2 k ( 1 - 1 / n 2 ) .

Metrics