Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Friesem, J. S. Zelenka, Appl. Opt. 6, 1755 (1967).
    [CrossRef] [PubMed]
  2. A. Kozma, Optica Acta 15, 527 (1968).
    [CrossRef]
  3. J. W. Goodman, J. Opt. Soc. Amer. 58, 1276 (1968).
    [CrossRef]
  4. A. Kozma, G. W. Jull, K. O. Hill, Appl. Opt. 9, 721 (1970).
    [CrossRef] [PubMed]
  5. A. Kozma, “Some Factors Affecting the Performance of Holograms,” Ph.D. thesis, The University of London (1968).
  6. L. H. Lin, J. Opt. Soc. Amer. 61, 203 (1971).
    [CrossRef]
  7. A. W. Lohmann, D. P. Paris, Appl. Opt. 6, 1739 (1967).
    [CrossRef] [PubMed]
  8. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968) pp. 235–238.
  9. J. M. J. Takarski, Appl. Opt. 7, 989 (1968).
    [CrossRef]
  10. A. Vander Lugt, F. B. Rotz, Appl. Opt. 9, 215 (1970).
    [CrossRef]

1971 (1)

L. H. Lin, J. Opt. Soc. Amer. 61, 203 (1971).
[CrossRef]

1970 (2)

1968 (3)

J. M. J. Takarski, Appl. Opt. 7, 989 (1968).
[CrossRef]

A. Kozma, Optica Acta 15, 527 (1968).
[CrossRef]

J. W. Goodman, J. Opt. Soc. Amer. 58, 1276 (1968).
[CrossRef]

1967 (2)

Friesem, A.

Goodman, J. W.

J. W. Goodman, J. Opt. Soc. Amer. 58, 1276 (1968).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968) pp. 235–238.

Hill, K. O.

Jull, G. W.

Kozma, A.

A. Kozma, G. W. Jull, K. O. Hill, Appl. Opt. 9, 721 (1970).
[CrossRef] [PubMed]

A. Kozma, Optica Acta 15, 527 (1968).
[CrossRef]

A. Kozma, “Some Factors Affecting the Performance of Holograms,” Ph.D. thesis, The University of London (1968).

Lin, L. H.

L. H. Lin, J. Opt. Soc. Amer. 61, 203 (1971).
[CrossRef]

Lohmann, A. W.

Paris, D. P.

Rotz, F. B.

Takarski, J. M. J.

Vander Lugt, A.

Zelenka, J. S.

Appl. Opt. (5)

J. Opt. Soc. Amer. (2)

J. W. Goodman, J. Opt. Soc. Amer. 58, 1276 (1968).
[CrossRef]

L. H. Lin, J. Opt. Soc. Amer. 61, 203 (1971).
[CrossRef]

Optica Acta (1)

A. Kozma, Optica Acta 15, 527 (1968).
[CrossRef]

Other (2)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968) pp. 235–238.

A. Kozma, “Some Factors Affecting the Performance of Holograms,” Ph.D. thesis, The University of London (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Amplitude transmittance TA vs exposure E curve. The solid line is a curve fitted to experimental data, the points are calculated using the mathematical model, and x’s mark the reference beam exposures for curves shown in Figs. 2 and 3. E is in ergs/cm2. TA is normalized to unity transmittance at zero exposure.

Fig. 2
Fig. 2

Normalized reconstructed wave amplitude √ η ¯ vs normalized signal-wave amplitude |as/a0| at 11.5 lines/mm spatial frequency. The solid lines are calculated curves and the dashed lines are experimentally measured curves. E0’s are reference beam exposures with values of (a) 77 and 19 ergs/cm2; (b) 10 and 39 ergs/cm2.

Fig. 3
Fig. 3

Normalized reconstructed wave amplitude √ η ¯ vs normalized signal-wave amplitude |as/a0| at 60 lines/mm spatial frequency. The solid lines are calculated curves and the dashed lines are experimentally measured curves. E0’s are reference beam exposures with values of (a) 77 and 19 ergs/cm2; (b) 10 and 39 ergs/cm2.

Tables (1)

Tables Icon

Table I Properties of Calculated Curves

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T A = g [ E ( a s , E 0 , y ) ] ,
E = E 0 [ 1 + ( a s + a 0 ) 2 + 2 ( a s / a 0 ) cos y ] .
[ η ( a s , E 0 ) ] 1 2 = 1 2 π - π π g [ E ( a s , E 0 , y ) ] cos y d y .

Metrics