Abstract

Astronomical measurements at mid- and far-infrared wavelengths can be made by using aircraft or balloons to carry telescopes above the strongly absorbing lower atmosphere. To measure the atmospheric background radiation present at these altitudes, a Michelson interferometer has been built and flown to a height of 38 km on a balloon. This paper describes the instrument and the methods of data reduction and calibration, and presents initial spectra in the range 100–1000 cm−1 (10–100 μ) obtained to a mean resolution of 34 cm−1 during flight.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Low, J. Opt. Soc. Am. 51, 1300 (1961).
    [CrossRef]
  2. R. Beer, Nature 209, 1226 (1966).
    [CrossRef]
  3. H. H. Aumann, C. M. Gillespie, F. J. Low, Astrophys. J. 157, L69 (1969).
    [CrossRef]
  4. H. H. Aumann, F. J. Low, Astrophys. J. 159, L159 (1970).
    [CrossRef]
  5. W. F. Hoffmann, C. L. Frederick, Astrophys. J. 155, L9 (1969).
    [CrossRef]
  6. P. Jacquinot, Rep. Progr. Phys. 23, 267 (1960).
    [CrossRef]
  7. P. Felgett, J. Phys. Rad. 19, 187 (1958).
    [CrossRef]
  8. S. A. Zhevakin, A. P. Naumov, Geomagnetism Aeronomy 3, 537 (1963).
  9. J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
    [CrossRef]
  10. J. Connes, thesis, University of Paris (1960).
  11. H. A. Gebbie, R. Q. Twiss, Rep. Progr. Phys. 29, 729 (1966).
    [CrossRef]
  12. P. Connes, Mem. Soc. Roy. Sci. Liège 9, 81 (1964).
  13. E. V. Loewenstein, Appl. Opt. 5, 845 (1966).
    [CrossRef] [PubMed]
  14. M. L. Forman, W. H. Steel, G. A. Vanasse, J. Opt. Soc. Am. 56, 59 (1966).
    [CrossRef]

1970 (1)

H. H. Aumann, F. J. Low, Astrophys. J. 159, L159 (1970).
[CrossRef]

1969 (2)

W. F. Hoffmann, C. L. Frederick, Astrophys. J. 155, L9 (1969).
[CrossRef]

H. H. Aumann, C. M. Gillespie, F. J. Low, Astrophys. J. 157, L69 (1969).
[CrossRef]

1966 (5)

R. Beer, Nature 209, 1226 (1966).
[CrossRef]

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

H. A. Gebbie, R. Q. Twiss, Rep. Progr. Phys. 29, 729 (1966).
[CrossRef]

E. V. Loewenstein, Appl. Opt. 5, 845 (1966).
[CrossRef] [PubMed]

M. L. Forman, W. H. Steel, G. A. Vanasse, J. Opt. Soc. Am. 56, 59 (1966).
[CrossRef]

1964 (1)

P. Connes, Mem. Soc. Roy. Sci. Liège 9, 81 (1964).

1963 (1)

S. A. Zhevakin, A. P. Naumov, Geomagnetism Aeronomy 3, 537 (1963).

1961 (1)

1960 (1)

P. Jacquinot, Rep. Progr. Phys. 23, 267 (1960).
[CrossRef]

1958 (1)

P. Felgett, J. Phys. Rad. 19, 187 (1958).
[CrossRef]

Aumann, H. H.

H. H. Aumann, F. J. Low, Astrophys. J. 159, L159 (1970).
[CrossRef]

H. H. Aumann, C. M. Gillespie, F. J. Low, Astrophys. J. 157, L69 (1969).
[CrossRef]

Beer, R.

R. Beer, Nature 209, 1226 (1966).
[CrossRef]

Chamberlain, J. E.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

Chantry, G. W.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

Connes, J.

J. Connes, thesis, University of Paris (1960).

Connes, P.

P. Connes, Mem. Soc. Roy. Sci. Liège 9, 81 (1964).

Felgett, P.

P. Felgett, J. Phys. Rad. 19, 187 (1958).
[CrossRef]

Findlay, F. D.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

Forman, M. L.

Frederick, C. L.

W. F. Hoffmann, C. L. Frederick, Astrophys. J. 155, L9 (1969).
[CrossRef]

Gebbie, H. A.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

H. A. Gebbie, R. Q. Twiss, Rep. Progr. Phys. 29, 729 (1966).
[CrossRef]

Gibbs, J. E.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

Gillespie, C. M.

H. H. Aumann, C. M. Gillespie, F. J. Low, Astrophys. J. 157, L69 (1969).
[CrossRef]

Hoffmann, W. F.

W. F. Hoffmann, C. L. Frederick, Astrophys. J. 155, L9 (1969).
[CrossRef]

Jacquinot, P.

P. Jacquinot, Rep. Progr. Phys. 23, 267 (1960).
[CrossRef]

Loewenstein, E. V.

Low, F. J.

H. H. Aumann, F. J. Low, Astrophys. J. 159, L159 (1970).
[CrossRef]

H. H. Aumann, C. M. Gillespie, F. J. Low, Astrophys. J. 157, L69 (1969).
[CrossRef]

F. J. Low, J. Opt. Soc. Am. 51, 1300 (1961).
[CrossRef]

Naumov, A. P.

S. A. Zhevakin, A. P. Naumov, Geomagnetism Aeronomy 3, 537 (1963).

Steel, W. H.

Stone, N. W. B.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

Twiss, R. Q.

H. A. Gebbie, R. Q. Twiss, Rep. Progr. Phys. 29, 729 (1966).
[CrossRef]

Vanasse, G. A.

Wright, A. J.

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

Zhevakin, S. A.

S. A. Zhevakin, A. P. Naumov, Geomagnetism Aeronomy 3, 537 (1963).

Appl. Opt. (1)

Astrophys. J. (3)

H. H. Aumann, C. M. Gillespie, F. J. Low, Astrophys. J. 157, L69 (1969).
[CrossRef]

H. H. Aumann, F. J. Low, Astrophys. J. 159, L159 (1970).
[CrossRef]

W. F. Hoffmann, C. L. Frederick, Astrophys. J. 155, L9 (1969).
[CrossRef]

Geomagnetism Aeronomy (1)

S. A. Zhevakin, A. P. Naumov, Geomagnetism Aeronomy 3, 537 (1963).

Infrared Phys. (1)

J. E. Chamberlain, G. W. Chantry, F. D. Findlay, H. A. Gebbie, J. E. Gibbs, N. W. B. Stone, A. J. Wright, Infrared Phys. 6, 195 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Phys. Rad. (1)

P. Felgett, J. Phys. Rad. 19, 187 (1958).
[CrossRef]

Mem. Soc. Roy. Sci. Liège (1)

P. Connes, Mem. Soc. Roy. Sci. Liège 9, 81 (1964).

Nature (1)

R. Beer, Nature 209, 1226 (1966).
[CrossRef]

Rep. Progr. Phys. (2)

P. Jacquinot, Rep. Progr. Phys. 23, 267 (1960).
[CrossRef]

H. A. Gebbie, R. Q. Twiss, Rep. Progr. Phys. 29, 729 (1966).
[CrossRef]

Other (1)

J. Connes, thesis, University of Paris (1960).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Portion of an emission spectrum recorded at a height of 2.5 km in the Sierra Nevada, Spain, under conditions of low atmospheric water content. The resolution is approximately 4 cm−1 and the vertical bars identify narrow regions free of strong water vapor lines.

Fig. 2
Fig. 2

The instrument with part of the mirror drive unit removed to show the reference interferometer.

Fig. 3
Fig. 3

The optical arrangement. Radiation is incident on the beam splitter at 65°, and the resulting beams are recombined with a phase separation which depends on the position of the moving mirror. The reference interferometer operates at 5461 Å and gives rise to a sine wave output.

Fig. 4
Fig. 4

Block diagram of the electronics. Both the chopper and mirror drive motors are controlled by the 400-Hz oscillator, and the detector output is synchronously rectified at the modulation frequency of 16 Hz.

Fig. 5
Fig. 5

Gondola on the launch vehicle. The spectrometer package is at the top with the NCAR telemetry, etc., below.

Fig. 6
Fig. 6

Interferogram and magnetometer traces recorded shortly after launch.

Fig. 7
Fig. 7

Spectra in the range 400–1000 cm−1 from the flight of 19 August 1969. The blackbody curves are for the air temperatures measured at 1.1 km, 5.5 km, and 12.2 km.

Fig. 8
Fig. 8

Low wavenumber spectra from the flight of 19 August 1969. The air temperatures correspond to altitudes of 1.1 km, 5.5 km, 9.1 km, and 15 km.

Tables (1)

Tables Icon

Table I Meteorological Data for the Flight of 19 August 1969

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( k ) = 0 X I ( x ) cos ( 2 π k x ) d x .
I k ( sky ) = G r k T k ( N k - F k ) ,
I k ( cal ) = G r k T k [ B k ( T 0 ) - F k ] ,
N k = [ B k ( T 0 ) - F k ] I k ( sky ) / I k ( cal ) + F k .
I k ( float ) = - G r k F k             ( T k = 1 ) .

Metrics