Abstract

An equation modeling ir aerosol emission is presented with experimental data and spectra of low temperature steam from laboratory radiometric measurements. The equation, for the 8–13-μ ir continuum, predicts emissions for traces of liquid water aerosol comparable to those from Elsasser’s equation attributed to water vapor. Several curves compare water absorptivity coefficients in the liquid and vapor phases and as applied to atmospheric measurements at the 10.6-μ CO2 laser wavelength. Results indicate that water aerosols can account for major changes in radiance, even through apparently clear atmospheres. Ice crystals, by implication, represent another fertile field for study as absorbers and emitters.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Carlon, “Phase-Transition Changes in Absorptivity of Simple Molecules in the Infrared,” Edgewood Arsenal Technical Report, 1971.
  2. W. M. Elsasser, Phys. Rev. 53, 768 (1938).
    [CrossRef]
  3. P. J. Wyatt, V. R. Stull, G. N. Plass, Appl. Opt. 3, 229 (1964).
    [CrossRef]
  4. J. H. McCoy, D. B. Rensch, R. K. Long, Appl. Opt. 8, 1471 (1969).
    [CrossRef] [PubMed]
  5. H. R. Carlon, Appl. Opt. 9, 2000 (1970).
    [CrossRef] [PubMed]
  6. H. R. Carlon, Appl. Opt. 4, 1089 (1965).
    [CrossRef]
  7. H. R. Carlon, Appl. Opt. 5, 879 (1966).
    [CrossRef] [PubMed]
  8. V. S. Samoylenko, Acad. of Sci. of USSR, Inst. of Oceanography Trans. (AD660407) Science Press, Moscow, Vol. 78.
  9. E. K. Plyler, N. Acquista, J. Opt. Soc. Am. 44, 505 (1954).
    [CrossRef]
  10. R. M. Adams, J. J. Katz, J. Opt. Soc. Am. 46, 895 (1956).
    [CrossRef]
  11. L. D. Kislovskii, Opt. Spectrosc. 8, 201 (1959).
  12. M. Centeno, J. Opt. Soc. Am. 31, 244 (1941).
    [CrossRef]

1970 (1)

1969 (1)

1966 (1)

1965 (1)

1964 (1)

1959 (1)

L. D. Kislovskii, Opt. Spectrosc. 8, 201 (1959).

1956 (1)

1954 (1)

1941 (1)

1938 (1)

W. M. Elsasser, Phys. Rev. 53, 768 (1938).
[CrossRef]

Acquista, N.

Adams, R. M.

Carlon, H. R.

H. R. Carlon, Appl. Opt. 9, 2000 (1970).
[CrossRef] [PubMed]

H. R. Carlon, Appl. Opt. 5, 879 (1966).
[CrossRef] [PubMed]

H. R. Carlon, Appl. Opt. 4, 1089 (1965).
[CrossRef]

H. R. Carlon, “Phase-Transition Changes in Absorptivity of Simple Molecules in the Infrared,” Edgewood Arsenal Technical Report, 1971.

Centeno, M.

Elsasser, W. M.

W. M. Elsasser, Phys. Rev. 53, 768 (1938).
[CrossRef]

Katz, J. J.

Kislovskii, L. D.

L. D. Kislovskii, Opt. Spectrosc. 8, 201 (1959).

Long, R. K.

McCoy, J. H.

Plass, G. N.

Plyler, E. K.

Rensch, D. B.

Samoylenko, V. S.

V. S. Samoylenko, Acad. of Sci. of USSR, Inst. of Oceanography Trans. (AD660407) Science Press, Moscow, Vol. 78.

Stull, V. R.

Wyatt, P. J.

Appl. Opt. (5)

J. Opt. Soc. Am. (3)

Opt. Spectrosc. (1)

L. D. Kislovskii, Opt. Spectrosc. 8, 201 (1959).

Phys. Rev. (1)

W. M. Elsasser, Phys. Rev. 53, 768 (1938).
[CrossRef]

Other (2)

V. S. Samoylenko, Acad. of Sci. of USSR, Inst. of Oceanography Trans. (AD660407) Science Press, Moscow, Vol. 78.

H. R. Carlon, “Phase-Transition Changes in Absorptivity of Simple Molecules in the Infrared,” Edgewood Arsenal Technical Report, 1971.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Exotech radiometer in steam measurement setup.

Fig. 2
Fig. 2

Steam spectra; (a) baseline (1X attenuation), first emissions (1X) upon heating, steam at 45°C (1X), and 45°C blackbody (10X); (b) cooling, steam at 55°C (top, 3X) and 55°C blackbody (30X); (c) cooling to 30°C (top, 1X) and return to baseline (1X).

Fig. 3
Fig. 3

Steam experiment curves, kv vs n and mean droplet diameter, μ.

Fig. 4
Fig. 4

kL from five literature sources compared to Elsasser’s equation with 104 ordinate correction.

Fig. 5
Fig. 5

Liquid water aerosol emission, radiant flux with wavelength, and precipitable cm of aerosol, 20°C.

Fig. 6
Fig. 6

Water vapor emission, radiant flux with wavelength, and precipitable cm of vapor vs blackbody, 20°C.

Fig. 7
Fig. 7

n, fraction, of total atmospheric water necessary in liquid aerosol phase for 1:1 liquid:vapor emission with wavelength.

Fig. 8
Fig. 8

Atmospheric emissivity, λ, for 1-km path at 10.6-μ wavelength with relative humidity and n, 25°C.

Fig. 9
Fig. 9

Atmospheric emissivity, λ for 1-km path at 10.6-μ wavelength with relative humidity and n, 0°C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ln 1 1 - λ = x [ f ( k L , λ ) × n + ( k v , λ ) ( 1 - n ) ] ,
n = 1.008 D / ( 1.008 D + 0.0242 ) .
k v , λ = 0.034 + 0.0894 x / L ,

Metrics