Abstract

An analysis is given of Françon’s modification of the Savart plate at arbitrary angles to the optic axis. The factors limiting the useful field of view are examined, and it is shown that with the Françon modification, apart from improved fringe straightness, a considerable suppression of unwanted secondary fringe patterns is obtained. The use of large angles between the plate normal and the optic axis is shown to result in thick plates with required small shearing.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ann. Phys. 49, 292 (1840).
  2. M. Françon, Optical Interferometry (Academic, New York, 1966), pp. 137–141.
  3. Th. H. Peek, Appl. Opt. 10, 1092 (1971).
    [CrossRef] [PubMed]
  4. M. Françon, Rev. Opt. 31, 65 (1952).
  5. M. Françon, Rev. Opt. 32, 349 (1953).
  6. M. Françon, Opt. Acta 1, 50 (1954).
    [CrossRef]
  7. M. Françon, Appl. Opt. 3, 1033 (1964).
    [CrossRef]
  8. R. C. Jones et al., J. Opt. Soc. Am. 31, 488 (1941); J. Opt. Soc. Am. 32, 486 (1942); J. Opt. Soc. Am. 37, 107 (1947).
    [CrossRef]
  9. M. Françon, S. Mallick, J. Vulmière, J. Opt. Soc. Am. 55, 1553 (1965).
    [CrossRef]
  10. A. Weyrauch, Optik 28, 235 (1968).
  11. R. H. Hammerschlag, Opt. Acta 16, 491 (1969).
    [CrossRef]

1971 (1)

1969 (1)

R. H. Hammerschlag, Opt. Acta 16, 491 (1969).
[CrossRef]

1968 (1)

A. Weyrauch, Optik 28, 235 (1968).

1965 (1)

1964 (1)

1954 (1)

M. Françon, Opt. Acta 1, 50 (1954).
[CrossRef]

1953 (1)

M. Françon, Rev. Opt. 32, 349 (1953).

1952 (1)

M. Françon, Rev. Opt. 31, 65 (1952).

1941 (1)

1840 (1)

Ann. Phys. 49, 292 (1840).

Françon, M.

M. Françon, S. Mallick, J. Vulmière, J. Opt. Soc. Am. 55, 1553 (1965).
[CrossRef]

M. Françon, Appl. Opt. 3, 1033 (1964).
[CrossRef]

M. Françon, Opt. Acta 1, 50 (1954).
[CrossRef]

M. Françon, Rev. Opt. 32, 349 (1953).

M. Françon, Rev. Opt. 31, 65 (1952).

M. Françon, Optical Interferometry (Academic, New York, 1966), pp. 137–141.

Hammerschlag, R. H.

R. H. Hammerschlag, Opt. Acta 16, 491 (1969).
[CrossRef]

Jones, R. C.

Mallick, S.

Peek, Th. H.

Vulmière, J.

Weyrauch, A.

A. Weyrauch, Optik 28, 235 (1968).

Ann. Phys. (1)

Ann. Phys. 49, 292 (1840).

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

Opt. Acta (2)

M. Françon, Opt. Acta 1, 50 (1954).
[CrossRef]

R. H. Hammerschlag, Opt. Acta 16, 491 (1969).
[CrossRef]

Optik (1)

A. Weyrauch, Optik 28, 235 (1968).

Rev. Opt. (2)

M. Françon, Rev. Opt. 31, 65 (1952).

M. Françon, Rev. Opt. 32, 349 (1953).

Other (1)

M. Françon, Optical Interferometry (Academic, New York, 1966), pp. 137–141.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Conoscopic fringe patterns of (a) a twice 1.35-mm thick Savart plate cut at 5° to the optic axis and (b) modified plate.

Fig. 2
Fig. 2

Fringe patterns of (a) a twice 0.3-mm thick Savart plate cut at 11.5° to the optic axis and (b) modified plate.

Fig. 3
Fig. 3

Nearly straight interference fringes (a) of a twice 2-mm thick Savart plate cut at 45° to the optic axis; (b) straightness of the fringes is still clearly increased with the modified plate.

Fig. 4
Fig. 4

Strongly modulated straight parallel fringes (a) obtained with a twice 1-mm thick Savart plate cut at 60° to the optic axis; (b) the most striking effect of the insertion of the half-wave retardation plate in this case is the decrease of the fringe modulation.

Fig. 5
Fig. 5

Very large fringe separation (a) obtained with a 1° cut twice 2-mm thick modified plate; (b) the corresponding unmodified plate shows the usual hyperbolic fringe pattern.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Φ 1 = 2 π d Δ n ( a 1 + b 1 ) / ( λ cos ϑ ) ,
Φ s = [ 2 π d Δ n / ( λ cos ϑ ) ] [ 2 sin ϑ cos ϑ cos ( φ - π / 4 ) sin 2 β + sin 2 ϑ cos 2 φ cos 2 β ] .
s = d Δ n 2 sin 2 β / n 0 , t = d Δ n cos 2 β / n 0 2 .
Φ F = Φ 1 - Φ 2 = 4 π d Δ n sin ϑ sin φ sin 2 β / λ ,
s = 2 d Δ n sin 2 β / n 0 .
Δ = n 0 λ / ( 2 d Δ n sin 2 β ) .

Metrics