Abstract

Quantitative absorption measurements of the 5.9-μ, 7.5-μ, and the 11.3-μ bands of pure HNO3 vapor were carried out at 40°C. Use was made of absorption cells of various lengths in order to obtain curves of growth. The statistical spectral band model was applied, and band model parameters and integrated intensities were derived.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Leighton, Photochemistry of Air Pollution (Academic, New York, 1961).
  2. D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
    [CrossRef]
  3. P. E. Rhine, L. D. Tubbs, D. Williams, J. Opt. Soc. Amer. 59, 483 (1969); Appl. Opt. 8, 1500 (1969).
    [PubMed]
  4. G. E. McGraw, D. I. Bernitt, I. C. Hisatsune, J. Chem. Phys. 42, 237 (1965).
    [CrossRef]
  5. R. M. Goody, Atmospheric Radiation (Oxford University Press, New York, 1964), Vol. I, Theoretical Basis, Chap. 4.
  6. W. Malkmus, J. Opt. Soc. Amer. 57, 323 (1967).
    [CrossRef]
  7. W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
    [CrossRef]
  8. A. Goldman, J. Quart. Spectrosc. Radiative Transfer 8, 829 (1968).
    [CrossRef]
  9. A. Goldman, E. Finkman, U. P. Oppenheim, J. Opt. Soc. Amer. 59, 1218 (1969).
    [CrossRef]
  10. A. Guttman, J. Quant. Spectrosc. Radiative Transfer 2, 1 (1962).
    [CrossRef]
  11. H. K. Hughes, Appl. Opt. 2, 1937 (1963).

1969

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
[CrossRef]

P. E. Rhine, L. D. Tubbs, D. Williams, J. Opt. Soc. Amer. 59, 483 (1969); Appl. Opt. 8, 1500 (1969).
[PubMed]

A. Goldman, E. Finkman, U. P. Oppenheim, J. Opt. Soc. Amer. 59, 1218 (1969).
[CrossRef]

1968

A. Goldman, J. Quart. Spectrosc. Radiative Transfer 8, 829 (1968).
[CrossRef]

1967

W. Malkmus, J. Opt. Soc. Amer. 57, 323 (1967).
[CrossRef]

1965

G. E. McGraw, D. I. Bernitt, I. C. Hisatsune, J. Chem. Phys. 42, 237 (1965).
[CrossRef]

1963

H. K. Hughes, Appl. Opt. 2, 1937 (1963).

1962

A. Guttman, J. Quant. Spectrosc. Radiative Transfer 2, 1 (1962).
[CrossRef]

1956

W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Benedict, W. S.

W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Bernitt, D. I.

G. E. McGraw, D. I. Bernitt, I. C. Hisatsune, J. Chem. Phys. 42, 237 (1965).
[CrossRef]

Finkman, E.

A. Goldman, E. Finkman, U. P. Oppenheim, J. Opt. Soc. Amer. 59, 1218 (1969).
[CrossRef]

Goldman, A.

A. Goldman, E. Finkman, U. P. Oppenheim, J. Opt. Soc. Amer. 59, 1218 (1969).
[CrossRef]

A. Goldman, J. Quart. Spectrosc. Radiative Transfer 8, 829 (1968).
[CrossRef]

Goody, R. M.

R. M. Goody, Atmospheric Radiation (Oxford University Press, New York, 1964), Vol. I, Theoretical Basis, Chap. 4.

Guttman, A.

A. Guttman, J. Quant. Spectrosc. Radiative Transfer 2, 1 (1962).
[CrossRef]

Herman, R.

W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Hisatsune, I. C.

G. E. McGraw, D. I. Bernitt, I. C. Hisatsune, J. Chem. Phys. 42, 237 (1965).
[CrossRef]

Hughes, H. K.

H. K. Hughes, Appl. Opt. 2, 1937 (1963).

Kyle, T. G.

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
[CrossRef]

Leighton, P. A.

P. A. Leighton, Photochemistry of Air Pollution (Academic, New York, 1961).

Malkmus, W.

W. Malkmus, J. Opt. Soc. Amer. 57, 323 (1967).
[CrossRef]

McGraw, G. E.

G. E. McGraw, D. I. Bernitt, I. C. Hisatsune, J. Chem. Phys. 42, 237 (1965).
[CrossRef]

Moore, G. E.

W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Murcray, D. G.

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
[CrossRef]

Murcray, F. H.

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
[CrossRef]

Oppenheim, U. P.

A. Goldman, E. Finkman, U. P. Oppenheim, J. Opt. Soc. Amer. 59, 1218 (1969).
[CrossRef]

Rhine, P. E.

P. E. Rhine, L. D. Tubbs, D. Williams, J. Opt. Soc. Amer. 59, 483 (1969); Appl. Opt. 8, 1500 (1969).
[PubMed]

Silverman, S.

W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Tubbs, L. D.

P. E. Rhine, L. D. Tubbs, D. Williams, J. Opt. Soc. Amer. 59, 483 (1969); Appl. Opt. 8, 1500 (1969).
[PubMed]

Williams, D.

P. E. Rhine, L. D. Tubbs, D. Williams, J. Opt. Soc. Amer. 59, 483 (1969); Appl. Opt. 8, 1500 (1969).
[PubMed]

Williams, W. J.

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
[CrossRef]

Appl. Opt.

H. K. Hughes, Appl. Opt. 2, 1937 (1963).

Can. J. Phys.

W. S. Benedict, R. Herman, G. E. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

J. Chem. Phys.

G. E. McGraw, D. I. Bernitt, I. C. Hisatsune, J. Chem. Phys. 42, 237 (1965).
[CrossRef]

J. Opt. Soc. Amer.

D. G. Murcray, T. G. Kyle, F. H. Murcray, W. J. Williams, J. Opt. Soc. Amer. 59, 1131 (1969).
[CrossRef]

P. E. Rhine, L. D. Tubbs, D. Williams, J. Opt. Soc. Amer. 59, 483 (1969); Appl. Opt. 8, 1500 (1969).
[PubMed]

W. Malkmus, J. Opt. Soc. Amer. 57, 323 (1967).
[CrossRef]

A. Goldman, E. Finkman, U. P. Oppenheim, J. Opt. Soc. Amer. 59, 1218 (1969).
[CrossRef]

J. Quant. Spectrosc. Radiative Transfer

A. Guttman, J. Quant. Spectrosc. Radiative Transfer 2, 1 (1962).
[CrossRef]

J. Quart. Spectrosc. Radiative Transfer

A. Goldman, J. Quart. Spectrosc. Radiative Transfer 8, 829 (1968).
[CrossRef]

Other

P. A. Leighton, Photochemistry of Air Pollution (Academic, New York, 1961).

R. M. Goody, Atmospheric Radiation (Oxford University Press, New York, 1964), Vol. I, Theoretical Basis, Chap. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the apparatus for the purification of HNO3. A, distillation flask, 100 ml, with ice bath; B, thermometer; C, liquid nitrogen sample trap; D, to vacuum gauge; E, soda-lime trap; F, vacuum pump.

Fig. 2
Fig. 2

Schematic diagram of the gas handling system. A, sample container; B, gas cell; C, P2O5 drying tube; D, to nitrogen cylinder; E, to McLeod gauge; F, differential oil manometer, with Kel-F halocarbon oil; G mercury manometer, with a layer of Kel-F on the mercury; H, liquid nitrogen trap; I, soda-lime trap; J vacuum pump.

Fig. 3
Fig. 3

(a) Schematic diagram of the Teflon absorption cell. A, spectrometer mounting bracket; B, aluminum end plate with eight threaded holes; C, Teflon washer; D, 6.35-mm AgCl window; E, 6.35 mm × 20 threaded hole; F, 1-cm or 2-cm Teflon body; H, 6.35-mm AgCl window; I, Teflon washer; J aluminum end plate with eight threaded holes. (b) Schematic diagram of the cross section of the cell body. A, gas inlet tube, 3.18-mm o.d. × 1.59-mm i.d.; B, stainless steel 22.23-mm long screw, 6.35-mm × 20; C, 6.35-mm high Teflon sleeve, 4.76 mm o.d. × 3.18 i.d.; D, to vacuum pump.

Fig. 4
Fig. 4

Spectrum of HNO vapor in the region 600–4000 cm−1 at ~0.5 cm−1 resolution, 4.6 mm Hg pressure, 40°C in the 9.94-cm glass absorption cell.

Fig. 5
Fig. 5

Degraded spectra of HNO3 vapor at different pressures at 40°C in the 4.93-cm glass cell.

Fig. 6
Fig. 6

A plot of the deviation of −[ln T ¯ (ν)]/p from the average as a function of the HNO3 pressure p for ν = 1700 cm−1 at 40°C in the 4.93-cm glass cell.

Fig. 7
Fig. 7

Frequency dependence of the absorption coefficient k(ν) = S∘(ν)/d(ν) for the 5.9-μ band of HNO3 vapor at 40°C.

Fig. 8
Fig. 8

Frequency dependence of the absorption coefficient k(ν) = S∘(ν)/d(ν) for the 7.5-μ band of HNO3 vapor at 40°C.

Fig. 9
Fig. 9

Frequency dependence of the absorption coefficient k(ν) = S∘(ν)/d(ν) for the 11.3-μ band of HNO3 vapor at 40°C.

Tables (5)

Tables Icon

Table I Band Model Parameters of HNO3 at 40°C Between 850.0 cm−1 and 920.0 cm−1

Tables Icon

Table II Band Model Parameters of HNO3 at 40°C Between 1675.0 cm−1 and 1737.5 cm−1

Tables Icon

Table III Band Model Parameters of HNO3 at 40°C Between 1275.0 cm−1 and 1350.0 cm−1

Tables Icon

Table IV Derivation of Band Model Parameters for ν = 1700 cm@−1

Tables Icon

Table V Integrated Intensities for HNO3 at 40°C

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

α ( ν ) = x ( ν ) / L = S 0 ( ν ) / 2 π γ 0 ( ν ) ,
β ( ν ) = 2 π γ 0 ( ν ) p / d ( ν ) = β 0 ( ν ) p .
T ¯ ( ν ) = exp [ - W ¯ ( ν ) / d ( ν ) ] ,
W ¯ ( ν ) = 0 W [ S ( ν ) , β ( ν ) ] P [ S ( ν ) d S .
T ¯ ( ν ) = exp { - β ( ν ) f [ α ( ν ) L ] } ,
f ( x ) = x exp ( - x ) [ I 0 ( x ) + I 1 ( x ) ] ,
T ¯ ( ν ) = exp { - α ( ν ) β 0 ( ν ) p L [ 1 + 2 α ( ν ) L ] 1 2 } .
T ¯ ( ν ) = exp ( - [ β 0 ( ν ) p / 4 ] { [ 1 + 8 α ( ν ) L ] 1 2 - 1 } ) .
α ( ν ) = 1 / 2 ( L 0 ) .
β 0 ( ν ) = 2 y 0 ,
j [ 1 + b ( ν ) L j - a ( ν ) L j 2 / y j 2 ( ν ) ] 2 ,
j { Δ y i ( ν ) / y j ( ν ) - F α ( ν ) [ α ( ν ) , β 0 ( ν ) , L j ] Δ α ( ν ) / y j ( ν ) - F β 0 ( ν ) [ α ( ν ] , β 0 ( ν ) , L j ] Δ β 0 ( ν ) / y j ( ν ) } 2 ,
α ( ν ) i + 1 = α ( ν ) i + Λ α ( ν ) ,
β 0 ( ν ) i + 1 = β 0 ( ν ) i + Δ β 0 ( ν ) ,
Δ α ( ν ) / α ( ν ) + Δ β 0 ( ν ) / β 0 ( ν ) < .
γ m = γ m 0 p e ,
p e = p f + B p a = p t + ( B - 1 ) p a ,
L e = ( p a / p e ) L .
T ¯ ( ν ) = exp { - β 0 ( ν ) α ( ν ) p e L e [ 1 + 2 α ( ν ) B L e ] 1 2 } .
S b 0 = band k ( ν ) d ν ,
S b 0 = band [ S 0 ( ν ) / d ( ν ) ] d ν .
T ¯ ( ν ) exp { - [ S 0 ( ν ) / d ( ν ) ] p L } ,
S b 0 = - 1 p L band [ ln T ¯ ( ν ) ] d ν .
T ¯ ( ν ) = exp [ - k ( ν ) p L ] ,
k ( ν ) = α ( ν ) β 0 ( ν ) = S 0 ( ν ) / d ( ν ) .

Metrics