Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Meadows, W. O. Johnson, J. B. Allen, Appl. Opt. 9, 942 (1970).
    [CrossRef] [PubMed]
  2. H. Takasaki, Appl. Opt. 9, 1457 (1970).
    [CrossRef]

1970 (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Moiré contour map of a C-5A nose section with none of the unwanted patterns removed.

Fig. 2
Fig. 2

Schematic of the arrangement used to make moiré contour maps.

Fig. 3
Fig. 3

Moiré contour map of the C-5A nose section with the unwanted patterns removed.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

T 1 ( x ) = 1 2 + 1 2 sin 2 π x p ,
I 1 ( x , y ) = C [ 1 2 + 1 2 sin 2 π h x p ( h + z ) ] [ 1 2 + 1 2 sin 2 π p ( d z + h x h + z ) ] = C 4 [ 1 + sin 2 π p ( h x h + z ) + sin 2 π p ( d z + h x h + z ) - 1 2 cos 2 π p ( 2 h x + d z h + z ) + 1 2 cos 2 π p ( d z h + z ) ] .
T 1 ( x ) = 1 2 + 1 2 cos ( 2 π x / p ) .
I 1 ( x , y ) = C 4 [ 1 + cos 2 π x h p ( h + z ) + cos 2 π p ( d z + h x h + z ) + 1 2 cos 2 π p ( d z + h x h + z ) + 1 2 cos 2 π p ( d z h + z ) ] .
T 1 ( x ) = 1 2 - 1 2 sin 2 π x p
T 1 ( x ) = 1 2 - 1 2 cos 2 π x p .
I 1 ( x , y ) = C 4 [ 1 - sin 2 π h x p ( h + z ) - sin 2 π p ( h x + d z h + z ) - 1 2 cos 2 π p ( d z + 2 h x h + z ) + 1 2 cos 2 π p ( d z h + z ) ]
I 1 ( x , y ) = C 4 [ 1 - cos 2 π x h p ( h + z ) - cos 2 π p ( d z + h x h + z ) + 1 2 cos 2 π p ( d z + 2 h x h + z ) + 1 2 cos 2 π p ( d z h + z ) ] .
I = I 1 ( x , y ) + I 1 ( x , y ) + I 1 ( x , y ) + I 1 ( x , y ) = C [ 1 + 1 2 cos 2 π p ( d z h + z ) ] .
T 2 ( x ) = 1 2 + 1 2 g ( 2 π x p ) ,
T 2 ( x ) = 1 2 + 1 2 1 a n sin 2 π n x p + b n     cos 2 π n x p ,
I 2 ( x , y ) = C [ 1 a n sin ( 2 π n h x p ( h + z ) ) + b n     cos ( 2 π x n h p ( h + z ) ) + a n sin ( 2 π n ( d z + h x ) p ( h + z ) ) + b n cos ( 2 π n ( d z + h x ) p ( h + z ) ) + a n b n sin 2 π n p ( d z + 2 h x h + z ) + b n 2 - a n 2 2 cos 2 π n p ( d z + 2 h x h + z ) + 1 m n 1 ( a m a n + b n b m 2 ) cos 2 π p ( ( m - n ) h x - n d z h + z ) + ( b m b n - a m a n 2 )     cos 2 π p ( ( m + n ) h x + n d z h + z ) + a m b n     sin 2 π p ( ( m + n ) h x + n d z h + z ) + 1 + 1 ( a n 2 + b n 2 2 ) cos 2 π n d z p ( h + z ) ] .
f ( z ) = C [ 1 + 1 1 2 ( a n 2 + b n 2 ) cos 2 π p ( n d z h + z ) ]
T 2 ( x , t ) = 1 2 + 1 2 g [ 2 π p ( x - v t ) ] = 1 2 + 1 2 1 a n     sin 2 π n p ( x - v t ) + b n cos 2 π n p ( x - v t ) .
T 2 ( x , t ) = 1 2 + 1 2 1 a n sin 2 π n x p + b n cos 2 π n x p
a n = a n cos 2 π n v t p + b n sin 2 π n v t p and b n = - a n sin 2 π n v t p + b n cos 2 π n v t p .
f ( z ) = C [ 1 + 1 1 2 ( a 2 n + b 2 n )     cos 2 π p ( n d z h + z ) ] .
f ( z ) = C [ 1 + 1 1 2 ( a n 2 + b n 2 ) cos 2 π p ( n d z h + z ) ] .

Metrics