Abstract

Recent technological developments permit the modulation and scanning of laser beams at rates comparable with those of electron beams in television receivers. This accounts for much of the current interest in laser illuminated display systems which are not constrained in size, as is the cathode ray tube, by the necessity of a vacuum enclosure. The purpose of the present work is to show how photoluminescent materials can be used in conjunction with recently developed acoustooptic deflectors and modulators to achieve high quality laser display systems. The principal function of the photoluminescent materials is that of color conversion when cated onto a viewing screen. This allows an additional degree of freedom in laser display engineering by removing the spectral constraints imposed by the limited number of practical laser emissions. Various schemes for both black and white and multicolor displays are explored. Some of the concepts which evolved have been experimentally verified by the operation of a system which projected the video signal from a PICTUREPHONE set. The source was an argon ion laser which emitted a monochromatic blue (4880-Å) beam. After acoustooptic modulation and deflection, the blue beam was directed to a phosphor screen where it was converted into a brighter and speckle-free black and white display.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Van Uitert, D. A. Pinnow, J. C. Williams, Appl. Opt. 10, 150 (1971).
    [CrossRef] [PubMed]
  2. W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color-TV Display,” IEEE Conference on Laser Engineering and Applications, Washington, D.C., May 1969;C. E. Baker, A. D. Rugari, Information Display 3, 37 (Mar./Apr. 1966); S. M. Stone, J. Schlafer, V. J. Fowler, Information Display 6, 41 (Jan./Feb. 1969).
  3. D. A. Pinnow, “A Solid State Acoustooptic Light Deflector,” IEEE Conference on Laser Engineering and Applications, Washington, D. C., May 1969.
  4. A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
    [CrossRef]
  5. R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967).
    [CrossRef]
  6. R. T. Stevens, Sci. Technol. 44 (Nov.1968).
  7. C. E. Baker, IEEE Spectrum 5, 39 (Dec.1968).
    [CrossRef]
  8. E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965).
    [CrossRef]
  9. H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).
  10. A. L. Bloom, Proc. IEEE 54, 1262 (1966). A typical argon ion laser that is commercially available requires 7000 W of electrical power and has a total optical output of 2 W.
    [CrossRef]
  11. I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969).
    [CrossRef]
  12. R. B. Allen, S. J. Scalise, Appl. Phys. Lett. 14, 188 (1969).
    [CrossRef]
  13. P. W. Smith, IEEE J. Quantum Electron. QE-2 (1966); A. L. Bloom, Proc. IEEE 54, 1262 (1966).
    [CrossRef]
  14. A. typical krypton ion laser that is commercially available requires 7000 W of electrical power and has a 150-mW output at 6471 Å.
  15. L. H. Enloe, Bell System Tech. J. 46, 1479 (1967).
  16. W. T. Silfvast, Appl. Phys. Lett. 13, 169 (1968).
    [CrossRef]
  17. S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.
  18. K. McIlwain, C. E. Dean, Eds., Principles of Color Television (Wiley, New York, 1966), pp. 81–83.
  19. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 113–121.
  20. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 107–111.
  21. E. I. Gordon, Proc. IEEE 54, 1391 (1966).
    [CrossRef]
  22. R. Adler, IEEE Spectrum 4, 42 (May1967).
    [CrossRef]
  23. J. D. Gould, W. L. Makous, Information Display 5, 25 (1968).
  24. J. T. LaMacchia, BTL; private communication.
  25. G. W. Gray, Molecular Structure and the Properties of Liquid Crystals (Academic, New York, 1962), pp. 47–48; C. Robinson, “The Cholesteric Phase in Polypeptide Solutions and Biological Structures,” in Liquid Crystals (Proceedings of the International Conference on Liquid Crystals held at Kent State University, 16–20 August 1965). Coordinated by G. H. Brown, G. J. Doenes, M. M. Labes (Gordon and Breach, New York, 1966), pp. 147–174.
  26. H. W. Leidecker, private communication.

1971 (1)

1969 (2)

I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969).
[CrossRef]

R. B. Allen, S. J. Scalise, Appl. Phys. Lett. 14, 188 (1969).
[CrossRef]

1968 (4)

R. T. Stevens, Sci. Technol. 44 (Nov.1968).

C. E. Baker, IEEE Spectrum 5, 39 (Dec.1968).
[CrossRef]

J. D. Gould, W. L. Makous, Information Display 5, 25 (1968).

W. T. Silfvast, Appl. Phys. Lett. 13, 169 (1968).
[CrossRef]

1967 (4)

L. H. Enloe, Bell System Tech. J. 46, 1479 (1967).

R. Adler, IEEE Spectrum 4, 42 (May1967).
[CrossRef]

R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967).
[CrossRef]

H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).

1966 (4)

A. L. Bloom, Proc. IEEE 54, 1262 (1966). A typical argon ion laser that is commercially available requires 7000 W of electrical power and has a total optical output of 2 W.
[CrossRef]

P. W. Smith, IEEE J. Quantum Electron. QE-2 (1966); A. L. Bloom, Proc. IEEE 54, 1262 (1966).
[CrossRef]

A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
[CrossRef]

E. I. Gordon, Proc. IEEE 54, 1391 (1966).
[CrossRef]

1965 (1)

E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965).
[CrossRef]

Adler, R.

R. Adler, IEEE Spectrum 4, 42 (May1967).
[CrossRef]

A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
[CrossRef]

Ahmed, S. A.

S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.

S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.

Allen, R. B.

R. B. Allen, S. J. Scalise, Appl. Phys. Lett. 14, 188 (1969).
[CrossRef]

Baker, C. E.

C. E. Baker, IEEE Spectrum 5, 39 (Dec.1968).
[CrossRef]

Ballman, A. A.

R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967).
[CrossRef]

Bloom, A. L.

A. L. Bloom, Proc. IEEE 54, 1262 (1966). A typical argon ion laser that is commercially available requires 7000 W of electrical power and has a total optical output of 2 W.
[CrossRef]

Boersch, H.

H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).

Campillo, A. J.

S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.

Chen, F. S.

R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967).
[CrossRef]

Church, C. H.

I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969).
[CrossRef]

Denton, R. T.

R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967).
[CrossRef]

Desmares, P.

A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
[CrossRef]

Enloe, L. H.

L. H. Enloe, Bell System Tech. J. 46, 1479 (1967).

Gordon, E. I.

E. I. Gordon, Proc. IEEE 54, 1391 (1966).
[CrossRef]

E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965).
[CrossRef]

Gould, J. D.

J. D. Gould, W. L. Makous, Information Display 5, 25 (1968).

Gray, G. W.

G. W. Gray, Molecular Structure and the Properties of Liquid Crystals (Academic, New York, 1962), pp. 47–48; C. Robinson, “The Cholesteric Phase in Polypeptide Solutions and Biological Structures,” in Liquid Crystals (Proceedings of the International Conference on Liquid Crystals held at Kent State University, 16–20 August 1965). Coordinated by G. H. Brown, G. J. Doenes, M. M. Labes (Gordon and Breach, New York, 1966), pp. 147–174.

Herziger, G.

H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).

Keeffe, W.

S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.

Korpel, A.

A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
[CrossRef]

W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color-TV Display,” IEEE Conference on Laser Engineering and Applications, Washington, D.C., May 1969;C. E. Baker, A. D. Rugari, Information Display 3, 37 (Mar./Apr. 1966); S. M. Stone, J. Schlafer, V. J. Fowler, Information Display 6, 41 (Jan./Feb. 1969).

Labuda, E. F.

E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965).
[CrossRef]

LaMacchia, J. T.

J. T. LaMacchia, BTL; private communication.

Larson, D. A.

I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969).
[CrossRef]

Leidecker, H. W.

H. W. Leidecker, private communication.

Liberman, I.

I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969).
[CrossRef]

Makous, W. L.

J. D. Gould, W. L. Makous, Information Display 5, 25 (1968).

Miller, R. C.

E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965).
[CrossRef]

Pinnow, D. A.

L. G. Van Uitert, D. A. Pinnow, J. C. Williams, Appl. Opt. 10, 150 (1971).
[CrossRef] [PubMed]

D. A. Pinnow, “A Solid State Acoustooptic Light Deflector,” IEEE Conference on Laser Engineering and Applications, Washington, D. C., May 1969.

Scalise, S. J.

R. B. Allen, S. J. Scalise, Appl. Phys. Lett. 14, 188 (1969).
[CrossRef]

Seelig, W.

H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).

Silfvast, W. T.

W. T. Silfvast, Appl. Phys. Lett. 13, 169 (1968).
[CrossRef]

Smith, P. W.

P. W. Smith, IEEE J. Quantum Electron. QE-2 (1966); A. L. Bloom, Proc. IEEE 54, 1262 (1966).
[CrossRef]

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 113–121.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 107–111.

Stevens, R. T.

R. T. Stevens, Sci. Technol. 44 (Nov.1968).

Van Uitert, L. G.

Volland, J.

H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).

Watson, W.

A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
[CrossRef]

Watson, W. H.

W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color-TV Display,” IEEE Conference on Laser Engineering and Applications, Washington, D.C., May 1969;C. E. Baker, A. D. Rugari, Information Display 3, 37 (Mar./Apr. 1966); S. M. Stone, J. Schlafer, V. J. Fowler, Information Display 6, 41 (Jan./Feb. 1969).

Williams, J. C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

R. B. Allen, S. J. Scalise, Appl. Phys. Lett. 14, 188 (1969).
[CrossRef]

W. T. Silfvast, Appl. Phys. Lett. 13, 169 (1968).
[CrossRef]

Bell System Tech. J. (1)

L. H. Enloe, Bell System Tech. J. 46, 1479 (1967).

IEEE J. Quantum Electron. (3)

I. Liberman, D. A. Larson, C. H. Church, IEEE J. Quantum Electron. QE-5, 238 (1969).
[CrossRef]

P. W. Smith, IEEE J. Quantum Electron. QE-2 (1966); A. L. Bloom, Proc. IEEE 54, 1262 (1966).
[CrossRef]

E. F. Labuda, E. I. Gordon, R. C. Miller, IEEE J. Quantum Electron. QE-1, 273 (1965).
[CrossRef]

IEEE Spectrum (2)

C. E. Baker, IEEE Spectrum 5, 39 (Dec.1968).
[CrossRef]

R. Adler, IEEE Spectrum 4, 42 (May1967).
[CrossRef]

Information Display (1)

J. D. Gould, W. L. Makous, Information Display 5, 25 (1968).

J. Appl. Phys. (1)

R. T. Denton, F. S. Chen, A. A. Ballman, J. Appl. Phys. 59, 1611 (1967).
[CrossRef]

Phys. Lett. (1)

H. Boersch, G. Herziger, W. Seelig, J. Volland, Phys. Lett. 24A, 695 (1967).

Proc. IEEE (3)

A. L. Bloom, Proc. IEEE 54, 1262 (1966). A typical argon ion laser that is commercially available requires 7000 W of electrical power and has a total optical output of 2 W.
[CrossRef]

A. Korpel, R. Adler, P. Desmares, W. Watson, Proc. IEEE 54, 1429 (1966).
[CrossRef]

E. I. Gordon, Proc. IEEE 54, 1391 (1966).
[CrossRef]

Sci. Technol. (1)

R. T. Stevens, Sci. Technol. 44 (Nov.1968).

Other (10)

W. H. Watson, A. Korpel, “Equalization of Acoustooptic Deflection Cells in a Laser Color-TV Display,” IEEE Conference on Laser Engineering and Applications, Washington, D.C., May 1969;C. E. Baker, A. D. Rugari, Information Display 3, 37 (Mar./Apr. 1966); S. M. Stone, J. Schlafer, V. J. Fowler, Information Display 6, 41 (Jan./Feb. 1969).

D. A. Pinnow, “A Solid State Acoustooptic Light Deflector,” IEEE Conference on Laser Engineering and Applications, Washington, D. C., May 1969.

A. typical krypton ion laser that is commercially available requires 7000 W of electrical power and has a 150-mW output at 6471 Å.

S. A. Ahmed, W. Keeffe, “High Power Tricolor Mixed Gas Ion Laser,” and S. A. Ahmed, A. J. Campillo, “He–Ne–Cd Laser with Two Color Output,” International Electron Device Meeting, Washington, D.C., October 1969.

K. McIlwain, C. E. Dean, Eds., Principles of Color Television (Wiley, New York, 1966), pp. 81–83.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 113–121.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 107–111.

J. T. LaMacchia, BTL; private communication.

G. W. Gray, Molecular Structure and the Properties of Liquid Crystals (Academic, New York, 1962), pp. 47–48; C. Robinson, “The Cholesteric Phase in Polypeptide Solutions and Biological Structures,” in Liquid Crystals (Proceedings of the International Conference on Liquid Crystals held at Kent State University, 16–20 August 1965). Coordinated by G. H. Brown, G. J. Doenes, M. M. Labes (Gordon and Breach, New York, 1966), pp. 147–174.

H. W. Leidecker, private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The CIE chromaticity diagram. The dotted lines enclose the color gamut of a shadow mask color cathode ray tube.

Fig. 2
Fig. 2

The relative sensitivity of a standard normal eye to light of varying wavelength.

Fig. 3
Fig. 3

Schematic of the experimental laser projection system.

Fig. 4
Fig. 4

A Mod I PICTUREPHONE display (A) as seen on a CRT monitor and (B) as projected onto a YAG:Ce screen using the laser system described in the text.

Fig. 5
Fig. 5

(a) A rotating color wheel screen which is coated with red (R), blue (B), and green (G) phosphors. (b) Rotating prisms which perform the same function as the color wheel but occupy less space.

Fig. 6
Fig. 6

A shadow mask and phosphor screen. Monochromatic light is incident upon the screen from the three angularly resolved color channels.

Fig. 7
Fig. 7

A cylindrical lens array screen. Light from the red channel is focused entirely onto a red phosphor while light from the blue-green channel is entirely scattered without color conversion.

Fig. 8
Fig. 8

A corrugated screen for multicolor display. The blue-green channels and the red channel are effectively separated by the shadow of the corrugation.

Metrics