Abstract

Experiments were performed on a CO2 laser using both saturable absorbing gas and slowly rotating mirror Q-switches. It was found that the saturating absorber essentially controls the pulse width and structure over a wide range of mirror rotation rates. A theoretical calculation is also reported. The CO2 laser and the absorber were both assumed to be two-level systems.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. R. Wood, S. E. Schwartz, Appl. Phys. Lett. 11, 88 (1967).
    [CrossRef]
  2. M. A. Kovacs, G. W. Flynn, A. Javan, Appl. Phys. Lett. 8, 62 (1966).
    [CrossRef]
  3. Y. Ohtsuka, H. Yoshinaga, Japan. J. Appl. Phys. 8, 1319 (1969).
    [CrossRef]
  4. G. Hillman, J. Tulip, H. Sequin, Appl. Opt. 9, 515 (1970).
    [CrossRef] [PubMed]
  5. W. F. Krupke, Appl. Phys. Lett. 14, 221 (1969).
    [CrossRef]
  6. E. L. Steele, Optical Lasers in Electronics (Wiley, New York, 1968).
  7. E. Hofelich-Abate, F. Hofelich, J. Appl. Phys. 39, 4823 (1968).
    [CrossRef]
  8. D. Meyerhofer, IEEE J. Quantum Electron. QE-4, 762 (1968).
    [CrossRef]
  9. H. Statz, C. L. Tang, G. F. Koster, J. Appl. Phys. 37, 4278 (1966).
    [CrossRef]

1970 (1)

1969 (2)

Y. Ohtsuka, H. Yoshinaga, Japan. J. Appl. Phys. 8, 1319 (1969).
[CrossRef]

W. F. Krupke, Appl. Phys. Lett. 14, 221 (1969).
[CrossRef]

1968 (2)

E. Hofelich-Abate, F. Hofelich, J. Appl. Phys. 39, 4823 (1968).
[CrossRef]

D. Meyerhofer, IEEE J. Quantum Electron. QE-4, 762 (1968).
[CrossRef]

1967 (1)

O. R. Wood, S. E. Schwartz, Appl. Phys. Lett. 11, 88 (1967).
[CrossRef]

1966 (2)

M. A. Kovacs, G. W. Flynn, A. Javan, Appl. Phys. Lett. 8, 62 (1966).
[CrossRef]

H. Statz, C. L. Tang, G. F. Koster, J. Appl. Phys. 37, 4278 (1966).
[CrossRef]

Flynn, G. W.

M. A. Kovacs, G. W. Flynn, A. Javan, Appl. Phys. Lett. 8, 62 (1966).
[CrossRef]

Hillman, G.

Hofelich, F.

E. Hofelich-Abate, F. Hofelich, J. Appl. Phys. 39, 4823 (1968).
[CrossRef]

Hofelich-Abate, E.

E. Hofelich-Abate, F. Hofelich, J. Appl. Phys. 39, 4823 (1968).
[CrossRef]

Javan, A.

M. A. Kovacs, G. W. Flynn, A. Javan, Appl. Phys. Lett. 8, 62 (1966).
[CrossRef]

Koster, G. F.

H. Statz, C. L. Tang, G. F. Koster, J. Appl. Phys. 37, 4278 (1966).
[CrossRef]

Kovacs, M. A.

M. A. Kovacs, G. W. Flynn, A. Javan, Appl. Phys. Lett. 8, 62 (1966).
[CrossRef]

Krupke, W. F.

W. F. Krupke, Appl. Phys. Lett. 14, 221 (1969).
[CrossRef]

Meyerhofer, D.

D. Meyerhofer, IEEE J. Quantum Electron. QE-4, 762 (1968).
[CrossRef]

Ohtsuka, Y.

Y. Ohtsuka, H. Yoshinaga, Japan. J. Appl. Phys. 8, 1319 (1969).
[CrossRef]

Schwartz, S. E.

O. R. Wood, S. E. Schwartz, Appl. Phys. Lett. 11, 88 (1967).
[CrossRef]

Sequin, H.

Statz, H.

H. Statz, C. L. Tang, G. F. Koster, J. Appl. Phys. 37, 4278 (1966).
[CrossRef]

Steele, E. L.

E. L. Steele, Optical Lasers in Electronics (Wiley, New York, 1968).

Tang, C. L.

H. Statz, C. L. Tang, G. F. Koster, J. Appl. Phys. 37, 4278 (1966).
[CrossRef]

Tulip, J.

Wood, O. R.

O. R. Wood, S. E. Schwartz, Appl. Phys. Lett. 11, 88 (1967).
[CrossRef]

Yoshinaga, H.

Y. Ohtsuka, H. Yoshinaga, Japan. J. Appl. Phys. 8, 1319 (1969).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

O. R. Wood, S. E. Schwartz, Appl. Phys. Lett. 11, 88 (1967).
[CrossRef]

M. A. Kovacs, G. W. Flynn, A. Javan, Appl. Phys. Lett. 8, 62 (1966).
[CrossRef]

W. F. Krupke, Appl. Phys. Lett. 14, 221 (1969).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Meyerhofer, IEEE J. Quantum Electron. QE-4, 762 (1968).
[CrossRef]

J. Appl. Phys. (2)

H. Statz, C. L. Tang, G. F. Koster, J. Appl. Phys. 37, 4278 (1966).
[CrossRef]

E. Hofelich-Abate, F. Hofelich, J. Appl. Phys. 39, 4823 (1968).
[CrossRef]

Japan. J. Appl. Phys. (1)

Y. Ohtsuka, H. Yoshinaga, Japan. J. Appl. Phys. 8, 1319 (1969).
[CrossRef]

Other (1)

E. L. Steele, Optical Lasers in Electronics (Wiley, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Laser system.

Fig. 2
Fig. 2

Pulse length vs repetition rate (upper curve without SF6).

Fig. 3
Fig. 3

Pulse height vs repetition rate (lower curve without SF6).

Fig. 4
Fig. 4

Theoretical output exponential loss function.

Fig. 5
Fig. 5

Theoretical output with absorber (exponential loss function).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d ϕ / d t = - ϕ γ ( t ) + W i ϕ η + K 1 W m i ϕ m ,
d η / d t = W p ( 1 - η ) - W s ( 1 + η ) - 2 η ϕ W i ,
d m / d t = - W m s ( 1 + m ) - K 2 W m i ϕ m ,

Metrics