Abstract

This paper deals with the properties of the images of truncated one-dimensional periodic bar targets formed by aberration-limited optical systems. Attention is directed to the problem of determining how many bars are required at a given spatial frequency in order to obtain an image which closely approximates that for an infinite-chain periodic bar target. Numerical calculations are carried out for the case of an aberration-limited, glancing-incidence x-ray telescope.

© 1971 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Barakat, A. Houston, J. Opt. Soc. Amer. 53, 1371 (1963).
    [CrossRef]
  2. K. Singh, A. K. Kavathekar, J. Opt. Soc. Amer. 59, 936 (1969).
  3. See, for example, J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 6.
  4. E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), Sec. 2-5.
  5. R. Barakat, S. Lerman, Appl. Opt. 6, 545 (1967).
    [CrossRef] [PubMed]
  6. J. D. Mangus, J. H. Underwood, Appl. Opt. 8, 95 (1969).
    [CrossRef] [PubMed]
  7. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), Sec. 11.9.
  8. Ref. 3, Sec. 2-1.
  9. Ref. 7, Sec. 5.3.

1969 (2)

K. Singh, A. K. Kavathekar, J. Opt. Soc. Amer. 59, 936 (1969).

J. D. Mangus, J. H. Underwood, Appl. Opt. 8, 95 (1969).
[CrossRef] [PubMed]

1967 (1)

1963 (1)

R. Barakat, A. Houston, J. Opt. Soc. Amer. 53, 1371 (1963).
[CrossRef]

Barakat, R.

R. Barakat, S. Lerman, Appl. Opt. 6, 545 (1967).
[CrossRef] [PubMed]

R. Barakat, A. Houston, J. Opt. Soc. Amer. 53, 1371 (1963).
[CrossRef]

Goodman, J. W.

See, for example, J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 6.

Houston, A.

R. Barakat, A. Houston, J. Opt. Soc. Amer. 53, 1371 (1963).
[CrossRef]

Kavathekar, A. K.

K. Singh, A. K. Kavathekar, J. Opt. Soc. Amer. 59, 936 (1969).

Lerman, S.

Mangus, J. D.

O’Neill, E. L.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), Sec. 2-5.

Singh, K.

K. Singh, A. K. Kavathekar, J. Opt. Soc. Amer. 59, 936 (1969).

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), Sec. 11.9.

Underwood, J. H.

Appl. Opt. (2)

J. Opt. Soc. Amer. (2)

R. Barakat, A. Houston, J. Opt. Soc. Amer. 53, 1371 (1963).
[CrossRef]

K. Singh, A. K. Kavathekar, J. Opt. Soc. Amer. 59, 936 (1969).

Other (5)

See, for example, J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), Chap. 6.

E. L. O’Neill, Introduction to Statistical Optics (Addison-Wesley, Reading, Mass., 1963), Sec. 2-5.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), Sec. 11.9.

Ref. 3, Sec. 2-1.

Ref. 7, Sec. 5.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

X-ray telescope line-spread function used in the truncated bar-target response calculations.

Fig. 2
Fig. 2

Images of truncated bar targets with various numbers of bars for a common angular period of 10.0 sec of arc.

Fig. 3
Fig. 3

Images of truncated bar targets with various numbers of bars for a common angular period of 5.0 sec of arc.

Tables (3)

Tables Icon

Table I Image Contrast and Average Irradiance for a Bar-Target Angular Period of 10.0 Sec of Arc

Tables Icon

Table II Image Contrast and Average Irradiance for a Bar-Target Angular Period of 5.0 Sec of Arc

Tables Icon

Table III Image Contrast and Average Irradiance for a Bar-Target Angular Period of 3.1 Sec of Arc

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x ) = - + L ( x - x ) O ( x ) d x ,
C = ( I max - I min ) / ( I max + I min )

Metrics