Abstract

Total absorptance ∫ A(ν)dν has been determined as a function of absorber concentration w and equivalent pressure Pe for the major infrared absorption bands of carbon dioxide with centers at 3716, 3609, 2350, 1064, and 961 cm−1. The results in the 875–495 cm−1 region are expressed in terms of mean spectral absorptance A¯(ν1ν2)=ν2ν1A(ν)dν/(ν1ν2) for five separate subregions. The effects of temperature variations on absorption in some regions are discussed. Estimates of band intensity ∫ k(ν) are given for each band and are compared with the results of others.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Burch, D. Williams, Appl. Opt. 1, 473 (1962).
    [CrossRef]
  2. D. E. Burch, D. Williams, Appl. Opt. 1, 587 (1962).
    [CrossRef]
  3. D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt. 1, 359 (1962).
    [CrossRef]
  4. J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
    [CrossRef]
  5. L. D. Kaplan (private communication).
  6. William Benedict (private communication).
  7. D. K. Edwards, J. Opt. Soc. Am. 50, 617 (1960).
    [CrossRef]
  8. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1945), p. 274.
  9. D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
    [CrossRef]
  10. L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
    [CrossRef]
  11. A. M. Thorndike, J. Chem. Phys. 15, 868 (1947).
    [CrossRef]
  12. D. Weber, J. R. Holm, S. S. Penner, J. Chem. Phys. 20, 1820 (1952).
    [CrossRef]
  13. G. Yamamoto, T. Sasamori, Sci. Repts. Tôhuku Univ., Fifth Ser. 10, No 2 (July1958).

1962

1960

1958

G. Yamamoto, T. Sasamori, Sci. Repts. Tôhuku Univ., Fifth Ser. 10, No 2 (July1958).

1956

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
[CrossRef]

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

1952

D. Weber, J. R. Holm, S. S. Penner, J. Chem. Phys. 20, 1820 (1952).
[CrossRef]

1951

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

1947

A. M. Thorndike, J. Chem. Phys. 15, 868 (1947).
[CrossRef]

Benedict, William

William Benedict (private communication).

Burch, D. E.

Crawford, B. L.

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

Edwards, D. K.

Eggers, D. F.

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1945), p. 274.

Holm, J. R.

D. Weber, J. R. Holm, S. S. Penner, J. Chem. Phys. 20, 1820 (1952).
[CrossRef]

Howard, J. N.

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
[CrossRef]

Kaplan, L. D.

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

L. D. Kaplan (private communication).

Penner, S. S.

D. Weber, J. R. Holm, S. S. Penner, J. Chem. Phys. 20, 1820 (1952).
[CrossRef]

Sasamori, T.

G. Yamamoto, T. Sasamori, Sci. Repts. Tôhuku Univ., Fifth Ser. 10, No 2 (July1958).

Singleton, E. B.

Thorndike, A. M.

A. M. Thorndike, J. Chem. Phys. 15, 868 (1947).
[CrossRef]

Weber, D.

D. Weber, J. R. Holm, S. S. Penner, J. Chem. Phys. 20, 1820 (1952).
[CrossRef]

Williams, D.

Yamamoto, G.

G. Yamamoto, T. Sasamori, Sci. Repts. Tôhuku Univ., Fifth Ser. 10, No 2 (July1958).

Appl. Opt.

J. Chem. Phys.

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

L. D. Kaplan, D. F. Eggers, J. Chem. Phys. 25, 876 (1956).
[CrossRef]

A. M. Thorndike, J. Chem. Phys. 15, 868 (1947).
[CrossRef]

D. Weber, J. R. Holm, S. S. Penner, J. Chem. Phys. 20, 1820 (1952).
[CrossRef]

J. Opt. Soc. Am.

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
[CrossRef]

D. K. Edwards, J. Opt. Soc. Am. 50, 617 (1960).
[CrossRef]

Sci. Repts. Tôhuku Univ., Fifth Ser.

G. Yamamoto, T. Sasamori, Sci. Repts. Tôhuku Univ., Fifth Ser. 10, No 2 (July1958).

Other

L. D. Kaplan (private communication).

William Benedict (private communication).

G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1945), p. 274.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Spectral absorptance in the vicinity of the 3716 and 3609 cm−1 bands of CO2. The spectral slit width is approximately 8 cm−1.

Fig. 2
Fig. 2

Total absorptance as a function of absorber concentration for various values of equivalent pressure: (a) the 3716 cm−1 band; (b) the 3609 cm−1 band.

Fig. 3
Fig. 3

Total absorptance for the entire “2.7 μ region” versus absorber concentration for various values of equivalent pressure.

Fig. 4
Fig. 4

Spectral absorptance in the vicinity of the 2350 cm−1 band. The spectral slit width is approximately 3.5 cm−1

Fig. 5
Fig. 5

Total absorptance of the 2350 cm−1 band for various equivalent pressures as a function of absorber concentration.

Fig. 6
Fig. 6

Spectral absorptance of CO2 in the frequency range 1150–700 cm−1. The spectral slit widths are indicated and are approximately 5–6 cm−1.

Fig. 7
Fig. 7

Total absorptance for various equivalent pressures as a function of absorber concentration: (a) the 1064 cm−1 band; (b) the 961 cm−1 band.

Fig. 8
Fig. 8

Spectral absorptance of the 1064 and 961 cm−1 bands at various temperatures.

Fig. 9
Fig. 9

Spectral absorptance in a portion of the 800–495 cm−1 region. The spectral slit widths are indicated.

Fig. 10
Fig. 10

Spectral absorptance in the spectral range 875–540 cm−1 at various temperatures.

Fig. 11
Fig. 11

Mean spectral absorptance of pure CO2 samples with the indicated absorber concentrations as a function of temperature. Pressure increased in accordance with the general gas law. The results shown in the figure along with tabulated values of A(ν1ν2) w, Pe, and T were used in reducing all data presented in later figures to a temperature of 26°C. Note: No valid data were obtained in the 545–495 cm−1 subregion; Ā (549–495 cm−1) was rather small, and water vapor evolved from the heated cell walls may have introduced serious errors.

Fig. 12
Fig. 12

Mean spectral absorptance in the 720–875 cm−1 subregion, denoted by Ā(720–875), as a function of absorber concentration at the indicated values of equivalent pressure.

Fig. 13
Fig. 13

Mean spectral absorptance in the 667–720 cm−1 subregion for various equivalent pressures as a function of absorber concentration.

Fig. 14
Fig. 14

Mean spectral absorptance in the 617–667 cm−1 subregion for various equivalent pressures as a function of absorber concentration.

Fig. 15
Fig. 15

Mean spectral absorptance in the 545–617 cm−1 subregion for various values of equivalent pressure as a function of absorber concentration.

Fig. 16
Fig. 16

Mean spectral absorptance in the 495–545 cm−1 subregion for various equivalent pressures as a function of absorber concentration.

Tables (1)

Tables Icon

Table I Band Intensitiesa

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

A ¯ ( ν 1 ν 2 ) = 1 ν 1 ν 2 ν 2 ν 1 A ( ν ) d ν .
A ( ν ) d ν = 3.5 ( w P e 0.65 ) 0.58
A ( ν ) d ν = 15.0 ( w P e 0.75 ) 0.54
A ( ν ) d ν = 0.023 ( w P e 0.30 ) 0.75
A ( ν ) d ν = 0.016 ( w P e 0.25 ) 0.78
w e = w exp [ E k ( 1 299 1 T ) ] ,
k ( ν ) d ν = 1 w A ( v ) d v

Metrics