Abstract

The fundamental and idealized kinetics of luminescence phenomena in crystalline materials are reviewed. Luminescent decay modes are distinguished on the basis of their time histories into three general categories: the exponential, bimolecular, and electron trap laws. Expressions for the decay of emission intensity are derived for each mode and distinguishing characteristics are presented.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Leverenz, F. Seitz, J. Appl. Phys. 10, 479 (1939).
    [CrossRef]
  2. C. G. A. Hill, Science 103, 155 (1946).
    [CrossRef] [PubMed]
  3. H. W. Leverenz, Luminescence of Solids (Wiley, New York, 1950).
  4. R. P. Johnson, J. Opt. Soc. Am. 29, 387 (1939).
    [CrossRef]
  5. G. F. J. Garlick, “Luminescence,” Handbuch der Physik 26, 2 (1958).
  6. D. Curie, Luminescence Crystalline (Dunod, Paris, 1960).
  7. F. E. Williams, J. Opt. Soc. Am. 39, 648 (1949).
    [CrossRef] [PubMed]
  8. J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 347 (1945).
  9. G. F. J. Garlick, M. H. F. Wilkins, Proc. Roy. Soc. A184, 408 (1945).
  10. R. H. Bube, Phys. Rev. 80, 655 (1950).
    [CrossRef]
  11. J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 366 (1945).
  12. R. H. Bube, J. Phys. Chem. 57, 785 (1953).
    [CrossRef]
  13. N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford Univ. Press, 1940), p. 136.
  14. I. Vavilov, Phys. Z. Sowjet 5, 369 (1934).
  15. G. F. J. Garlick, A. F. Gibson, Proc. Roy. Soc. A188, 485 (1947).
  16. J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 390 (1945).
  17. A. W. Smith, J. Turkevich, Phys. Rev. 87, 306 (1952).
    [CrossRef]
  18. R. H. Bube, J. Opt. Soc. Am. 39, 681 (1949).
    [CrossRef] [PubMed]
  19. J. L. Gillson, J. Opt. Soc. Am. 44, 341 (1954).
    [CrossRef]

1958

G. F. J. Garlick, “Luminescence,” Handbuch der Physik 26, 2 (1958).

1954

1953

R. H. Bube, J. Phys. Chem. 57, 785 (1953).
[CrossRef]

1952

A. W. Smith, J. Turkevich, Phys. Rev. 87, 306 (1952).
[CrossRef]

1950

R. H. Bube, Phys. Rev. 80, 655 (1950).
[CrossRef]

1949

1947

G. F. J. Garlick, A. F. Gibson, Proc. Roy. Soc. A188, 485 (1947).

1946

C. G. A. Hill, Science 103, 155 (1946).
[CrossRef] [PubMed]

1945

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 366 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 347 (1945).

G. F. J. Garlick, M. H. F. Wilkins, Proc. Roy. Soc. A184, 408 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 390 (1945).

1939

H. W. Leverenz, F. Seitz, J. Appl. Phys. 10, 479 (1939).
[CrossRef]

R. P. Johnson, J. Opt. Soc. Am. 29, 387 (1939).
[CrossRef]

1934

I. Vavilov, Phys. Z. Sowjet 5, 369 (1934).

Bube, R. H.

R. H. Bube, J. Phys. Chem. 57, 785 (1953).
[CrossRef]

R. H. Bube, Phys. Rev. 80, 655 (1950).
[CrossRef]

R. H. Bube, J. Opt. Soc. Am. 39, 681 (1949).
[CrossRef] [PubMed]

Curie, D.

D. Curie, Luminescence Crystalline (Dunod, Paris, 1960).

Garlick, G. F. J.

G. F. J. Garlick, “Luminescence,” Handbuch der Physik 26, 2 (1958).

G. F. J. Garlick, A. F. Gibson, Proc. Roy. Soc. A188, 485 (1947).

G. F. J. Garlick, M. H. F. Wilkins, Proc. Roy. Soc. A184, 408 (1945).

Gibson, A. F.

G. F. J. Garlick, A. F. Gibson, Proc. Roy. Soc. A188, 485 (1947).

Gillson, J. L.

Gurney, R. W.

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford Univ. Press, 1940), p. 136.

Hill, C. G. A.

C. G. A. Hill, Science 103, 155 (1946).
[CrossRef] [PubMed]

Johnson, R. P.

Leverenz, H. W.

H. W. Leverenz, F. Seitz, J. Appl. Phys. 10, 479 (1939).
[CrossRef]

H. W. Leverenz, Luminescence of Solids (Wiley, New York, 1950).

Mott, N. F.

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford Univ. Press, 1940), p. 136.

Randall, J. T.

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 366 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 347 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 390 (1945).

Seitz, F.

H. W. Leverenz, F. Seitz, J. Appl. Phys. 10, 479 (1939).
[CrossRef]

Smith, A. W.

A. W. Smith, J. Turkevich, Phys. Rev. 87, 306 (1952).
[CrossRef]

Turkevich, J.

A. W. Smith, J. Turkevich, Phys. Rev. 87, 306 (1952).
[CrossRef]

Vavilov, I.

I. Vavilov, Phys. Z. Sowjet 5, 369 (1934).

Wilkins, M. H. F.

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 390 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 347 (1945).

G. F. J. Garlick, M. H. F. Wilkins, Proc. Roy. Soc. A184, 408 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 366 (1945).

Williams, F. E.

Handbuch der Physik

G. F. J. Garlick, “Luminescence,” Handbuch der Physik 26, 2 (1958).

J. Appl. Phys.

H. W. Leverenz, F. Seitz, J. Appl. Phys. 10, 479 (1939).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. Chem.

R. H. Bube, J. Phys. Chem. 57, 785 (1953).
[CrossRef]

Phys. Rev.

A. W. Smith, J. Turkevich, Phys. Rev. 87, 306 (1952).
[CrossRef]

R. H. Bube, Phys. Rev. 80, 655 (1950).
[CrossRef]

Phys. Z. Sowjet

I. Vavilov, Phys. Z. Sowjet 5, 369 (1934).

Proc. Roy. Soc.

G. F. J. Garlick, A. F. Gibson, Proc. Roy. Soc. A188, 485 (1947).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 390 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 366 (1945).

J. T. Randall, M. H. F. Wilkins, Proc. Roy. Soc. A184, 347 (1945).

G. F. J. Garlick, M. H. F. Wilkins, Proc. Roy. Soc. A184, 408 (1945).

Science

C. G. A. Hill, Science 103, 155 (1946).
[CrossRef] [PubMed]

Other

H. W. Leverenz, Luminescence of Solids (Wiley, New York, 1950).

D. Curie, Luminescence Crystalline (Dunod, Paris, 1960).

N. F. Mott, R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford Univ. Press, 1940), p. 136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Crystal energy band structure.

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

d n d t = ( α + β ) n .
f exp ( E / k T ) ,
n = n 0 exp [ ( α + β ) t ] ,
I d n d t + β n = α n ,
I = I 0 exp [ ( α + β ) t ] ,
α = α ( E ) = α ( ν ) ,
E 1 ( min I 1 ( max ) h ν E 1 ( max ) I 1 ( min ) ,
d n d t = γ n 2 .
n = n 0 / ( 1 + γ n 0 t ) ,
I = I 0 / ( 1 + γ n 0 t ) 2 ,
C min I h ν C max I
E 1 I ,
c I .
I / I 0 = 1 / ( 1 + C t ) ,
d n d ι = γ n ( n + m ) .
n = n 0 m exp ( γ m t ) n 0 + m n 0 exp ( γ m t ) .
I γ n ( n + m ) ,
I I 0 = exp ( γ m t ) [ ( n 0 / m ) + 1 ( n 0 / m ) exp ( γ m t ) ] 2 ,
log I I 0 = m γ t 2 log [ n 0 m + 1 n 0 m exp ( γ m t ) ] .
log ( I / I 0 ) ( m + 2 n 0 ) γ t + n 0 γ 2 ( n 0 + m ) t 2 .
log ( I / I 0 ) = log ( 1 + C t ) C t ,
log ( I / I 0 ) ( m + 2 n 0 ) t .
log ( I / I 0 ) = 2 log ( 1 + n 0 γ t ) ,
log ( I / I 0 ) 2 n 0 γ t + n 0 2 γ 2 t 2 .
log ( I / I 0 ) ( m + 2 n 0 ) γ t + n 0 γ 2 ( n 0 + m ) t 2 .
I I 0 exp ( γ m t ) 1 + n 0 / m ,
I = I 0 ( 1 + C t ) x ,
d n d t = γ n ( n + m ) γ n 2 .
d n d t γ m n .
d n d t = p n ,
p = s exp ( E / k T ) ,
I = I 0 exp ( p t ) .
d n 2 d t = α n 2 + p n 1 ,
d n 1 d t = p n 1
I d n 2 d t
I = const . × exp ( p t ) + const . × exp ( α t ) .
I = 0 N E p exp ( p t ) d E ,
I = N E k T [ 1 exp ( s t ) ] t ,
I N E k T t .
N E = N 0 exp ( a E ) ,
I = 0 N 0 exp ( a E ) p exp ( p t ) d E ,
I = f ( s , k T ) t ( 1 + a k t ) .

Metrics