Abstract

This paper describes measurements on transmission interference filters for the far infrared (100–800 μ region). The reflection layers of these filters are metallic mesh. The measured coefficients of finesse, ten to sixty, are comparable with the values which can be obtained for interference filters in other spectral regions. Peak-transmission values up to 0.9 were reached. From these measurements the absorptivity of the single grids has been determined. Measurements on a variable spacing interference filter showed that the finesse is proportional to the square of the wavelength in accordance with theoretical predictions for interference filters constructed with reflection layers of one-dimensional wire gratings.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. N. Hadley, D. M. Dennison, J. Opt. Soc. Am. 37, 451 (1947).
    [CrossRef] [PubMed]
  2. H. H. Theissing, J. McGue, Rev. Sci. Instr. 26, 1203 (1955).
    [CrossRef]
  3. U. Oppenheim, J. Opt. Soc. Am. 46, 628 (1956).
    [CrossRef]
  4. H. Schröder in M. Auwärter, Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten (Stuttgart, Germany, 1957), p. 225.
  5. E. A. Lewis, J. P. Casey, J. Opt. Soc. Am. 41, 360 (1951).
    [CrossRef]
  6. W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-7, 221 (1959).
    [CrossRef]
  7. W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-8, 182 (1960).
    [CrossRef]
  8. H. Lamb, Proc. Math. Soc. (London) XIX, 523 (1897/98).
    [CrossRef]
  9. W v. Ignatowsky, Ann. Physik 44, 369 (1914).
    [CrossRef]
  10. W. Wessel, Hochfrequ. u. El.-ak. 53/54, 62 (1939).
  11. R. Honerjäger, Ann. Physik 4, 25 (1948).
    [CrossRef]
  12. E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
    [CrossRef]
  13. J. P. Casey, E. A. Lewis, J. Opt. Soc. Am. 42, 971 (1952).
    [CrossRef]
  14. R. Müller, Z. Naturforsch. 8A, 56 (1953).
  15. A. Esau, E. Ahrens, W. Kebbel, Hochfrequ. u. El.-ak. 53/54, 113 (1939).
  16. W. K. Pursley, Techn. Rep., The University of Michigan.
  17. L. Genzel, W. Eckhardt, Z. Physik 139, 578 (1954).
    [CrossRef]
  18. L. Genzel, Z. Physik 144, 311 (1956).
    [CrossRef]
  19. R. Geick, Z. Physik 163, 499 (1961).
    [CrossRef]
  20. V. J. Coates, Rev. Sci. Instr. 22, 853 (1951).
    [CrossRef]
  21. A. V. Stuart, J. Opt. Soc. Am. 43, 212 (1953).
    [CrossRef]
  22. G. Koppelmann, K. Krebs, Z. Physik 157, 592 (1960).
    [CrossRef]
  23. G. Koppelmann, K. Krebs, Z. Physik 158, 172 (1960).
    [CrossRef]
  24. W. C. King, W. Gordy, Phys. Rev. 93, 407 (1957).
    [CrossRef]
  25. L. Genzel, H. Happ, R. Weber, Z. Physik 154, 1 (1959).
    [CrossRef]
  26. R. E. Kagarise, J. Opt. Soc. Am. 51, 830 (1961).
    [CrossRef]
  27. R. Geick, Z. Physik 161, 116 (1961).
    [CrossRef]

1961

R. Geick, Z. Physik 163, 499 (1961).
[CrossRef]

R. E. Kagarise, J. Opt. Soc. Am. 51, 830 (1961).
[CrossRef]

R. Geick, Z. Physik 161, 116 (1961).
[CrossRef]

1960

G. Koppelmann, K. Krebs, Z. Physik 157, 592 (1960).
[CrossRef]

G. Koppelmann, K. Krebs, Z. Physik 158, 172 (1960).
[CrossRef]

W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-8, 182 (1960).
[CrossRef]

1959

W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-7, 221 (1959).
[CrossRef]

L. Genzel, H. Happ, R. Weber, Z. Physik 154, 1 (1959).
[CrossRef]

1957

W. C. King, W. Gordy, Phys. Rev. 93, 407 (1957).
[CrossRef]

1956

1955

H. H. Theissing, J. McGue, Rev. Sci. Instr. 26, 1203 (1955).
[CrossRef]

1954

L. Genzel, W. Eckhardt, Z. Physik 139, 578 (1954).
[CrossRef]

1953

R. Müller, Z. Naturforsch. 8A, 56 (1953).

A. V. Stuart, J. Opt. Soc. Am. 43, 212 (1953).
[CrossRef]

1952

E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[CrossRef]

J. P. Casey, E. A. Lewis, J. Opt. Soc. Am. 42, 971 (1952).
[CrossRef]

1951

1948

R. Honerjäger, Ann. Physik 4, 25 (1948).
[CrossRef]

1947

1939

W. Wessel, Hochfrequ. u. El.-ak. 53/54, 62 (1939).

A. Esau, E. Ahrens, W. Kebbel, Hochfrequ. u. El.-ak. 53/54, 113 (1939).

1914

W v. Ignatowsky, Ann. Physik 44, 369 (1914).
[CrossRef]

1897

H. Lamb, Proc. Math. Soc. (London) XIX, 523 (1897/98).
[CrossRef]

Ahrens, E.

A. Esau, E. Ahrens, W. Kebbel, Hochfrequ. u. El.-ak. 53/54, 113 (1939).

Auwärter, M.

H. Schröder in M. Auwärter, Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten (Stuttgart, Germany, 1957), p. 225.

Casey, J. P.

Coates, V. J.

V. J. Coates, Rev. Sci. Instr. 22, 853 (1951).
[CrossRef]

Culshaw, W.

W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-8, 182 (1960).
[CrossRef]

W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-7, 221 (1959).
[CrossRef]

Dennison, D. M.

Eckhardt, W.

L. Genzel, W. Eckhardt, Z. Physik 139, 578 (1954).
[CrossRef]

Esau, A.

A. Esau, E. Ahrens, W. Kebbel, Hochfrequ. u. El.-ak. 53/54, 113 (1939).

Geick, R.

R. Geick, Z. Physik 163, 499 (1961).
[CrossRef]

R. Geick, Z. Physik 161, 116 (1961).
[CrossRef]

Genzel, L.

L. Genzel, H. Happ, R. Weber, Z. Physik 154, 1 (1959).
[CrossRef]

L. Genzel, Z. Physik 144, 311 (1956).
[CrossRef]

L. Genzel, W. Eckhardt, Z. Physik 139, 578 (1954).
[CrossRef]

Gordy, W.

W. C. King, W. Gordy, Phys. Rev. 93, 407 (1957).
[CrossRef]

Hadley, L. N.

Happ, H.

L. Genzel, H. Happ, R. Weber, Z. Physik 154, 1 (1959).
[CrossRef]

Honerjäger, R.

R. Honerjäger, Ann. Physik 4, 25 (1948).
[CrossRef]

Ignatowsky, W v.

W v. Ignatowsky, Ann. Physik 44, 369 (1914).
[CrossRef]

Kagarise, R. E.

Kebbel, W.

A. Esau, E. Ahrens, W. Kebbel, Hochfrequ. u. El.-ak. 53/54, 113 (1939).

King, W. C.

W. C. King, W. Gordy, Phys. Rev. 93, 407 (1957).
[CrossRef]

Koppelmann, G.

G. Koppelmann, K. Krebs, Z. Physik 157, 592 (1960).
[CrossRef]

G. Koppelmann, K. Krebs, Z. Physik 158, 172 (1960).
[CrossRef]

Krebs, K.

G. Koppelmann, K. Krebs, Z. Physik 158, 172 (1960).
[CrossRef]

G. Koppelmann, K. Krebs, Z. Physik 157, 592 (1960).
[CrossRef]

Lamb, H.

H. Lamb, Proc. Math. Soc. (London) XIX, 523 (1897/98).
[CrossRef]

Lewis, E. A.

McGue, J.

H. H. Theissing, J. McGue, Rev. Sci. Instr. 26, 1203 (1955).
[CrossRef]

Müller, R.

R. Müller, Z. Naturforsch. 8A, 56 (1953).

Oppenheim, U.

Pursley, W. K.

W. K. Pursley, Techn. Rep., The University of Michigan.

Schröder, H.

H. Schröder in M. Auwärter, Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten (Stuttgart, Germany, 1957), p. 225.

Stuart, A. V.

Theissing, H. H.

H. H. Theissing, J. McGue, Rev. Sci. Instr. 26, 1203 (1955).
[CrossRef]

Weber, R.

L. Genzel, H. Happ, R. Weber, Z. Physik 154, 1 (1959).
[CrossRef]

Wessel, W.

W. Wessel, Hochfrequ. u. El.-ak. 53/54, 62 (1939).

Ann. Physik

W v. Ignatowsky, Ann. Physik 44, 369 (1914).
[CrossRef]

R. Honerjäger, Ann. Physik 4, 25 (1948).
[CrossRef]

Hochfrequ. u. El.-ak.

A. Esau, E. Ahrens, W. Kebbel, Hochfrequ. u. El.-ak. 53/54, 113 (1939).

W. Wessel, Hochfrequ. u. El.-ak. 53/54, 62 (1939).

IRE Trans. on Microwave Theory Tech.

W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-7, 221 (1959).
[CrossRef]

W. Culshaw, IRE Trans. on Microwave Theory Tech. MTT-8, 182 (1960).
[CrossRef]

J. Appl. Phys.

E. A. Lewis, J. P. Casey, J. Appl. Phys. 23, 605 (1952).
[CrossRef]

J. Opt. Soc. Am.

Phys. Rev.

W. C. King, W. Gordy, Phys. Rev. 93, 407 (1957).
[CrossRef]

Proc. Math. Soc. (London)

H. Lamb, Proc. Math. Soc. (London) XIX, 523 (1897/98).
[CrossRef]

Rev. Sci. Instr.

H. H. Theissing, J. McGue, Rev. Sci. Instr. 26, 1203 (1955).
[CrossRef]

V. J. Coates, Rev. Sci. Instr. 22, 853 (1951).
[CrossRef]

Z. Naturforsch.

R. Müller, Z. Naturforsch. 8A, 56 (1953).

Z. Physik

L. Genzel, W. Eckhardt, Z. Physik 139, 578 (1954).
[CrossRef]

L. Genzel, Z. Physik 144, 311 (1956).
[CrossRef]

R. Geick, Z. Physik 163, 499 (1961).
[CrossRef]

G. Koppelmann, K. Krebs, Z. Physik 157, 592 (1960).
[CrossRef]

G. Koppelmann, K. Krebs, Z. Physik 158, 172 (1960).
[CrossRef]

L. Genzel, H. Happ, R. Weber, Z. Physik 154, 1 (1959).
[CrossRef]

R. Geick, Z. Physik 161, 116 (1961).
[CrossRef]

Other

W. K. Pursley, Techn. Rep., The University of Michigan.

H. Schröder in M. Auwärter, Ergebnisse der Hochvakuumtechnik und der Physik dünner Schichten (Stuttgart, Germany, 1957), p. 225.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Measured transmission of metal gratings with grating constant to strip half-breadth ratio of 8. ….., one-dimensional grid, thick strips (Pursley,16 microwave measurements). - - -, one-dimensional grid, thin strips (Pursley,16 microwave measurements). ×, two-dimensional grid (infrared measurements).

Fig. 2
Fig. 2

Measured characteristic of an interference filter (grids on crystal quartz plates, each 5 mm thick). ×, measured - - -, corrected to zero spectrometer slit-width and parallel beams. S is the equivalent spectrometer slit-width. The orders of interference are given in parentheses.

Fig. 3
Fig. 3

Finesse of metal grid interference filters. - - -, expected from transmission meaurements on single grids (copper or nickel). ×, metal grids of copper on crystal quartz plates, each 5 mm thick. Δ, metal grids on polyethylene film. ○, metal grids of nickel unsupported.

Fig. 4
Fig. 4

Peak transmission of metal grid interference filters. - - -, calculated from experimental transmissivity together with theoretical absorptivity of a single grid (nickel). ×, metal grids of copper on crystal quartz plates, each 5 mm thick. Δ, metal grids on polyethylene film. ○, metal grids of nickel unsupported.

Fig. 5
Fig. 5

Cross section of the holder for unsupported grids. F—frame, R—ring, S—screws, G—metal grid.

Fig. 6
Fig. 6

Recording of the transmission lines of a combination of two interference filters. Upper curve: interference filter with the fourth-order peak transmission at 200 μ. Lower curve: interference filter with first-order peak transmission at 200 μ in addition to the fourth-order 200-μ interference filter. S is the equivalent spectrometer slit-width. The orders of interference are given in parentheses.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

τ = 1 [ 1 + ( A / T ) ] 2 1 1 + [ 4 R / ( 1 R ) 2 ] sin 2 δ / 2 ,
δ = ( 2 π / λ ) 2 n d + 2 Φ
Q = λ / Δ λ = k F 1 ,
F = π 2 arc sin [ ( 1 R ) / 2 R ]
F = π R 1 R .
τ max = 1 ( 1 + A / T ) 2
R = 1 1 + [ G ( g / a , λ , σ ) tan Φ ] 2
tan Φ = 2 g λ [ ln g 2 π a + H ( λ g ) ]
H ( λ g ) = m = 1 { [ 1 m 2 ( g / λ ) 2 ] 1 2 1 m } .
A = 0.314 g a R ( c σ λ ) 1 2 .
tan Φ = 0 or Φ = 0 , π , R = 1 tan 2 Φ = 1 ( 2 g λ ln g 2 π a ) 2 , A = 2 G = 0.314 g a ( c G λ ) 1 2 T , T = 1 R = tan 2 Φ = ( 2 g λ ln g 2 π a ) 2 . }
T = ( 2 g λ ln sin π a g ) 2 ,
F = π [ 2 g ln g 2 π a ] 2 · λ 2 for wire gratings , F = π [ 2 g ln sin π a g ] 2 · λ 2 for thin strip gratings , }
A T = 0.314 g a ( c σ ) 1 2 [ 2 g ln g 2 π a ] 2 · λ 3 2 for wire gratings , A T = 0.314 g a ( c σ ) 1 2 [ 2 g ln sin π a g ] 2 · λ 3 2 for thin strip gratings , }

Metrics