Abstract

Observations of the light intensity variations across the partially transmitting face of a laser crystal operated near threshold are reported. The intensity variation patterns are suggestive of the modes of a cylindrical microwave cavity and are believed to be closely related to the transverse modes of the optical resonator. Preliminary polarization studies indicated that patterns with only a twofold symmetry axis are linearly polarized, whereas others are unpolarized. The pattern sizes range between approximately 170 and 850 μ. The divergence of the emerging beam (several milliradians) decreased with increasing resonator length. Fabry-Perot analysis showed only one excited longitudinal mode for a 1-cm long resonator, but the number increased with the resonator length.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Snitzer, H. Osterberg, J. Opt. Soc. Am. 51, 499 (1961).
    [CrossRef]
  2. H. Kogelnik, W. W. Rigrod, Proc. IRE 50, 220 (1962).
  3. E. S. Dayhoff, B. Kessler, Bull. Am. Phys. Soc. Ser. II 7, 15 (1962).
  4. A. G. Fox, Tingye Li, Bell System Tech. J. 41, 453 (1961).
  5. G. D. Boyd, J. P. Gordon, Bell System Tech. J. 41, 489 (1961).
  6. W. G. Wagner, G. Birnbaum, J. Appl. Phys. 32, 1185 (1961).
    [CrossRef]
  7. D. A. Buddenhagen (to be published).
  8. B. J. McMurtry, A. E. Siegman, Applied Optics 1, 51 (1962).
    [CrossRef]

1962 (3)

H. Kogelnik, W. W. Rigrod, Proc. IRE 50, 220 (1962).

E. S. Dayhoff, B. Kessler, Bull. Am. Phys. Soc. Ser. II 7, 15 (1962).

B. J. McMurtry, A. E. Siegman, Applied Optics 1, 51 (1962).
[CrossRef]

1961 (4)

E. Snitzer, H. Osterberg, J. Opt. Soc. Am. 51, 499 (1961).
[CrossRef]

A. G. Fox, Tingye Li, Bell System Tech. J. 41, 453 (1961).

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 41, 489 (1961).

W. G. Wagner, G. Birnbaum, J. Appl. Phys. 32, 1185 (1961).
[CrossRef]

Birnbaum, G.

W. G. Wagner, G. Birnbaum, J. Appl. Phys. 32, 1185 (1961).
[CrossRef]

Boyd, G. D.

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 41, 489 (1961).

Buddenhagen, D. A.

D. A. Buddenhagen (to be published).

Dayhoff, E. S.

E. S. Dayhoff, B. Kessler, Bull. Am. Phys. Soc. Ser. II 7, 15 (1962).

Fox, A. G.

A. G. Fox, Tingye Li, Bell System Tech. J. 41, 453 (1961).

Gordon, J. P.

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 41, 489 (1961).

Kessler, B.

E. S. Dayhoff, B. Kessler, Bull. Am. Phys. Soc. Ser. II 7, 15 (1962).

Kogelnik, H.

H. Kogelnik, W. W. Rigrod, Proc. IRE 50, 220 (1962).

Li, Tingye

A. G. Fox, Tingye Li, Bell System Tech. J. 41, 453 (1961).

McMurtry, B. J.

B. J. McMurtry, A. E. Siegman, Applied Optics 1, 51 (1962).
[CrossRef]

Osterberg, H.

Rigrod, W. W.

H. Kogelnik, W. W. Rigrod, Proc. IRE 50, 220 (1962).

Siegman, A. E.

B. J. McMurtry, A. E. Siegman, Applied Optics 1, 51 (1962).
[CrossRef]

Snitzer, E.

Wagner, W. G.

W. G. Wagner, G. Birnbaum, J. Appl. Phys. 32, 1185 (1961).
[CrossRef]

Applied Optics (1)

B. J. McMurtry, A. E. Siegman, Applied Optics 1, 51 (1962).
[CrossRef]

Bell System Tech. J. (2)

A. G. Fox, Tingye Li, Bell System Tech. J. 41, 453 (1961).

G. D. Boyd, J. P. Gordon, Bell System Tech. J. 41, 489 (1961).

Bull. Am. Phys. Soc. Ser. II (1)

E. S. Dayhoff, B. Kessler, Bull. Am. Phys. Soc. Ser. II 7, 15 (1962).

J. Appl. Phys. (1)

W. G. Wagner, G. Birnbaum, J. Appl. Phys. 32, 1185 (1961).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. IRE (1)

H. Kogelnik, W. W. Rigrod, Proc. IRE 50, 220 (1962).

Other (1)

D. A. Buddenhagen (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photographs of the end of a 3-mm × 2.54-cm ruby showing some of the typical transverse mode patterns. Modes are tentatively identified (Snitzer’s notation) as follows: (a) HE11; (b) mixture of TE01 or TM01 with HE21; (c) mixture of EH11 or HE31 with HE12; (d) mixture of TE02 or TM02 with HE22; (e), (f), not identified.

Fig. 2(a)
Fig. 2(a)

Photographs of the end of the ruby rod (magnification ×6.3) and associated oscilloscope traces (scope sweep speed = 10 μsec/division) of the light output with time. Dependence of the patterns on angular position of the ruby about its own axis. 3-mm × 2.54-cm silvered sample. (i) Angular position ϕ = 0 degrees (reference position). (ii) ϕ = 97 degrees; tentative mode designation: mixture of EH11 with HE31. (iii) ϕ = 125 degrees.

Fig. 2(b)
Fig. 2(b)

Effect of strain on the pattern at the end of a ruby rod. Note shift and rotation of pattern relative to the ruby. 3-mm × 2.54-cm silvered sample (magnification ×7). (i) Strain applied. (ii) Strain released.

Fig. 3(a)
Fig. 3(a)

Polarization of light in a ruby mode pattern (magnification ×7). (i) Polarizer parallel to pattern axis. (ii) Polarizer perpendicular to pattern axis.

Fig. 3(b)
Fig. 3(b)

Resolution of a complicated transverse mode pattern by means of a polarizer. 3-mm × 2.54-cm silvered sample (magnification ×6.3). (i) Polarizer parallel to pattern axis. (ii) Polarizer perpendicular to pattern axis.

Fig. 4
Fig. 4

Fabry-Perot analysis of the laser output at room temperature. Fabry-Perot order separation = 0.513 cm−1; plate separation = 0.975 cm. (a) 3-mm × 2.54-cm silvered sample; optical resonator longitudinal mode separation = 0.111 cm−1; scope sweep speed = 5 μsec/division. (b) 3-mm × 1-cm silvered sample; optical resonator longitudinal mode separation = 0.281 cm−1; scope sweep speed = 5 μsec/division. (c) Same sample as (b) driven approximately 10 percent above threshold; scope sweep speed = 10 μsec/division.

Tables (1)

Tables Icon

Table I Ruby Samples and Optical Resonator Configurations Used in the Experiments

Metrics