Abstract

Instrumentation and experimental techniques employed for the determination of the total absorptance ∫A(ν)dν of the bands of various atmospheric gases are described. The total absorptances of the 2563, 2461, 2224, 1285, 1167, 692, and 589 cm−1 bands of pure N2O and N2O mixed with N2 have been determined as a function of absorber concentration w and equivalent pressure Pe which involves the partial pressures of the two gases. The results are given in graphical form. In general, it is found that in situations in which existing theory predicts absorptance proportional to the square roots of pressure and absorber concentration, the total absorptance is indeed nearly proportional to the square root of absorber concentration but not to the square root of the pressure; for the 2224 cm−1 band, ∫A(ν)dνPe0.37. In addition to graphical presentation of results, it is possible to express ∫A(ν)dν in terms of w and Pe by means of empirical equations applicable to certain definite ranges of the variables; the validity and the limitations of such empirical equations are discussed. For samples for which the product of the absorption coefficient k(ν) and the absorber concentration is much less than unity for all frequencies in an absorption band, it is possible to measure the band intensity or band strength ∫k(ν)dν. Values of band intensity for the 2563, 2461, 2224, 1167, and 589 cm−1 N2O bands are listed and compared with values previously reported by others.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Burch, E. B. Singleton, D. Williams, Appl. Opt. 1, 359 (1962). The symbols and nomenclature used in the present article were introduced in this reference. In accord with the new A.I.P. glossary of optical terminology, fractional absorptionA (ν) is called spectral absorptancein the present paper and the earlier term total absorption∫A(ν)dνis now called total absorptance.
    [CrossRef]
  2. J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
    [CrossRef]
  3. H. W. Thompson, R. L. Williams. Proc. Roy. Soc. A208, 326 (1951).
  4. R. M. Goody, T. W. Wormell, Proc. Roy. Soc. A209, 178 (1951).
  5. W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
    [CrossRef]
  6. W. M. Elsasser, “Harvard Meteorological Studies No. 6,” Harvard University, 1942.
  7. G. N. Plass, J. Opt. Soc. Am. 50, 868 (1960).
    [CrossRef]
  8. S. A. M. Thorndyke, A. J. Wells, E. B. Wilson, J. Chem. Phys. 18, 157 (1947).
    [CrossRef]
  9. D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
    [CrossRef]
  10. H. J. Calloman, D. C. McKean, H. W. Thompson, Proc. Roy. Soc. A208, 332 (1951).

1962

1960

1956

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
[CrossRef]

W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

1951

H. W. Thompson, R. L. Williams. Proc. Roy. Soc. A208, 326 (1951).

R. M. Goody, T. W. Wormell, Proc. Roy. Soc. A209, 178 (1951).

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

H. J. Calloman, D. C. McKean, H. W. Thompson, Proc. Roy. Soc. A208, 332 (1951).

1947

S. A. M. Thorndyke, A. J. Wells, E. B. Wilson, J. Chem. Phys. 18, 157 (1947).
[CrossRef]

Benedict, W.

W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Burch, D. E.

Calloman, H. J.

H. J. Calloman, D. C. McKean, H. W. Thompson, Proc. Roy. Soc. A208, 332 (1951).

Crawford, B. L.

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

Eggers, D. F.

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

Elsasser, W. M.

W. M. Elsasser, “Harvard Meteorological Studies No. 6,” Harvard University, 1942.

Goody, R. M.

R. M. Goody, T. W. Wormell, Proc. Roy. Soc. A209, 178 (1951).

Herman, R.

W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Howard, J. N.

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
[CrossRef]

McKean, D. C.

H. J. Calloman, D. C. McKean, H. W. Thompson, Proc. Roy. Soc. A208, 332 (1951).

Moore, G.

W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Plass, G. N.

Silverman, S.

W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

Singleton, E. B.

Thompson, H. W.

H. J. Calloman, D. C. McKean, H. W. Thompson, Proc. Roy. Soc. A208, 332 (1951).

H. W. Thompson, R. L. Williams. Proc. Roy. Soc. A208, 326 (1951).

Thorndyke, S. A. M.

S. A. M. Thorndyke, A. J. Wells, E. B. Wilson, J. Chem. Phys. 18, 157 (1947).
[CrossRef]

Wells, A. J.

S. A. M. Thorndyke, A. J. Wells, E. B. Wilson, J. Chem. Phys. 18, 157 (1947).
[CrossRef]

Williams, D.

Williams, R. L.

H. W. Thompson, R. L. Williams. Proc. Roy. Soc. A208, 326 (1951).

Wilson, E. B.

S. A. M. Thorndyke, A. J. Wells, E. B. Wilson, J. Chem. Phys. 18, 157 (1947).
[CrossRef]

Wormell, T. W.

R. M. Goody, T. W. Wormell, Proc. Roy. Soc. A209, 178 (1951).

Appl. Opt.

Can. J. Phys.

W. Benedict, R. Herman, G. Moore, S. Silverman, Can. J. Phys. 34, 830, 850 (1956).
[CrossRef]

J. Chem. Phys.

S. A. M. Thorndyke, A. J. Wells, E. B. Wilson, J. Chem. Phys. 18, 157 (1947).
[CrossRef]

D. F. Eggers, B. L. Crawford, J. Chem. Phys. 19, 1554 (1951).
[CrossRef]

J. Opt. Soc. Am.

G. N. Plass, J. Opt. Soc. Am. 50, 868 (1960).
[CrossRef]

J. N. Howard, D. E. Burch, D. Williams, J. Opt. Soc. Am. 46, 186, 237, 242, 334, 452 (1956).
[CrossRef]

Proc. Roy. Soc.

H. W. Thompson, R. L. Williams. Proc. Roy. Soc. A208, 326 (1951).

R. M. Goody, T. W. Wormell, Proc. Roy. Soc. A209, 178 (1951).

H. J. Calloman, D. C. McKean, H. W. Thompson, Proc. Roy. Soc. A208, 332 (1951).

Other

W. M. Elsasser, “Harvard Meteorological Studies No. 6,” Harvard University, 1942.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Spectral absorptance, expressed as “Percent Absorption,” for the 2224 cm−1 band. Values of Pe and w are listed for successive curves in the figure.

Fig. 2
Fig. 2

Spectral absorptance of various samples in the vicinity of the 2224 cm−1 band.

Fig. 3
Fig. 3

Total absorptance of the 2224 cm−1 band versus equivalent pressure for samples having constant values of absorber concentration w, which are listed for the successive curves.

Fig. 4
Fig. 4

Total absorptance of the 2224 cm−1 band versus equivalent pressure for samples in which absorber concentration is directly proportional to equivalent pressure.

Fig. 5
Fig. 5

Total absorptance of the 2224 cm−1 band versus absorber concentration for samples having the equivalent pressures listed.

Fig. 6
Fig. 6

Total absorptance versus wPe0.7. The limitations of empirical equations are illustrated.

Fig. 7
Fig. 7

Total absorptance versus wPe. The limitations of existing theories are illustrated.

Fig. 8
Fig. 8

Total absorptance of the 2563 cm−1 band versus absorber concentration for the values of equivalent pressure listed.

Fig. 9
Fig. 9

Total absorptance of the 2461 cm−1 band versus absorber concentration for various values of Pe.

Fig. 10
Fig. 10

Total absorptance of the 1285 cm−1 versus absorber concentration.

Fig. 11
Fig. 11

Total absorptance of the 1167 cm−1 band versus absorber concentration.

Fig. 12
Fig. 12

Spectral absorptance of the 692 cm−1 and 589 cm−1 bands measured with a spectral slit width of 6 cm−1. The bands were arbitrarily separated at 655 cm−1 in determining total absorptance.

Fig. 13
Fig. 13

Total absorptance of the 589 cm−1 band versus absorber concentration.

Tables (1)

Tables Icon

Table I N2O Band Intensities ∫k(ν)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A ( ν ) d ν = c ( w P e a ) b ,
A ( ν ) d ν = C + D Log ( w P e a ) ,
P e = P + 0.12 p
A ( ν ) d ν = c w m P e n ,
A ( ν ) d ν = c w 0.53 P e 0.37 c ( w P e 0.7 ) 0.53 .
A ( ν ) d ν = 18 ( w P e 0.7 ) 0.53
A ( ν ) d ν = 15 + 40 Log ( w P e 0.7 )
A ( ν ) = 1 e k ( ν ) w .
A ( ν ) d ν = ( 1 e k ( ν ) w ) d ν = w k ( ν ) d ν
k ( ν ) d ν = A ( ν ) d ν w .

Metrics