Abstract

Using published data on star irradiances in the visible region and assuming a blackbody distribution of energy, irradiances from stars and planets are calculated over the spectral region of 0.1 to 100 microns. Results are presented in chart form for ready application in the design of viewing systems operating in space.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Larmore, “Infrared Radiation from Celestial Bodies,” U.S. Air Force Project, Rand Research Memorandum, 293-1 (17March1952).
  2. Smithsonian Physical Tables (Smithsonian Institution, Washington, D.C., 1954), 9th revised ed.
  3. H. N. Russell, R. S. Dugan, J. Q. Stewart, Astronomy (Ginn, New York, 1945), Vols. I and II.
  4. M. R. Krasno, private communication.
  5. Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1957), Vol. 48.
    [CrossRef]
  6. J. Stebbins, A. E. Whitford, Astrophys. J. 102, 318 (1945).
    [CrossRef]
  7. F. F. Hall, C. V. Stanley, Appl. Opt. 1, 97 (1962).
    [CrossRef]
  8. C. W. Allen, Astrophysical Quantities (Athlone Press, Univ. of London, 1955).

1962

1945

J. Stebbins, A. E. Whitford, Astrophys. J. 102, 318 (1945).
[CrossRef]

Allen, C. W.

C. W. Allen, Astrophysical Quantities (Athlone Press, Univ. of London, 1955).

Dugan, R. S.

H. N. Russell, R. S. Dugan, J. Q. Stewart, Astronomy (Ginn, New York, 1945), Vols. I and II.

Hall, F. F.

Krasno, M. R.

M. R. Krasno, private communication.

Larmore, L.

L. Larmore, “Infrared Radiation from Celestial Bodies,” U.S. Air Force Project, Rand Research Memorandum, 293-1 (17March1952).

Russell, H. N.

H. N. Russell, R. S. Dugan, J. Q. Stewart, Astronomy (Ginn, New York, 1945), Vols. I and II.

Stanley, C. V.

Stebbins, J.

J. Stebbins, A. E. Whitford, Astrophys. J. 102, 318 (1945).
[CrossRef]

Stewart, J. Q.

H. N. Russell, R. S. Dugan, J. Q. Stewart, Astronomy (Ginn, New York, 1945), Vols. I and II.

Whitford, A. E.

J. Stebbins, A. E. Whitford, Astrophys. J. 102, 318 (1945).
[CrossRef]

Appl. Opt.

Astrophys. J.

J. Stebbins, A. E. Whitford, Astrophys. J. 102, 318 (1945).
[CrossRef]

Other

C. W. Allen, Astrophysical Quantities (Athlone Press, Univ. of London, 1955).

L. Larmore, “Infrared Radiation from Celestial Bodies,” U.S. Air Force Project, Rand Research Memorandum, 293-1 (17March1952).

Smithsonian Physical Tables (Smithsonian Institution, Washington, D.C., 1954), 9th revised ed.

H. N. Russell, R. S. Dugan, J. Q. Stewart, Astronomy (Ginn, New York, 1945), Vols. I and II.

M. R. Krasno, private communication.

Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, Berlin, 1957), Vol. 48.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a), (b). Calculated spectral irradiance from planets and brightest stars at top of atmosphere. (b): *—calculated irradiance from planets, at brightest, due to sun reflectance onfy. #—calculated irradiance from planets, due to self-emission only. GE—inferior planet at greatest elongation. OPP—superior planet at opposition. QUAD—superior planet at quadrature.

Fig. 2
Fig. 2

Minimum spectral irradiance of stars for various population levels, above the atmosphere.

Fig. 3
Fig. 3

Planck function.

Fig. 4
Fig. 4

Effective irradiance in the visible region (standard observer) versus visual magnitude.

Fig. 5
Fig. 5

Fraction of the total radiation emitted by a blackbody, at temperature, T, visible to the standard observer.

Fig. 6
Fig. 6

Graph used to obtain peak spectral irradiance for various values of visual magnitude versus effective temperature or spectral class.

Fig. 7
Fig. 7

Population of stars brighter than a particular visual magnitude.

Fig. 8
Fig. 8

Minimum spectral irradiance of stars for various population levels and spectral classes, above the atmosphere.

Fig. 9
Fig. 9

Measured spectral irradiance above the atmosphere from the sun compared with blackbody curves (from ref. 5).

Tables (3)

Tables Icon

Table I Visual Magnitudes and Effective Temperatures of Planets and the Brightest Visual and Red Stars

Tables Icon

Table II Data Used in Calculation of Planetary Self-Emission

Tables Icon

Table III Number of Stars in the Principal Spectral Classes above a Given Magnitude

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λ max T = 2898 ( λ in microns ; T in ° K ) .
m v = 2.5 log 10 ( I / I 0 ) .
η e ( T ) = 0 W λ ( T ) S e λ d λ 0 W λ ( T ) d λ ,
H λ peak = I ( m v ) η e ( T ) × W λ max ( T ) 0 W λ ( T ) d λ .
H λ ( peak ) = W λ max ( T ) 4 π ( 1 A ) π d 2 D 2
( λ max = 2898 T ( ° K ) ) ,
log I 1 I 2 = 0.4 ( m 2 m 1 ) .
m 1 = 0 , I 1 = ( 10 4 lumen / cm 2 ) × 10 5.68 = 2.09 × 10 10 lumen / cm 2 . *
I 0 = 0.00147 × 2.09 × 10 10 = 3.1 × 10 13 watt / cm 2 .

Metrics