Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Stich, J. Appl. Phys. 32, No. 10 (1961).
  2. T. H. Maiman, Phys. Rev. 123, No. 4 (1961).
  3. M. Çiftan, A. Krutchkoff, S. Koozekanani, Proc. IRE Letters 50, No. 1 (1961).

1961 (3)

M. L. Stich, J. Appl. Phys. 32, No. 10 (1961).

T. H. Maiman, Phys. Rev. 123, No. 4 (1961).

M. Çiftan, A. Krutchkoff, S. Koozekanani, Proc. IRE Letters 50, No. 1 (1961).

Çiftan, M.

M. Çiftan, A. Krutchkoff, S. Koozekanani, Proc. IRE Letters 50, No. 1 (1961).

Koozekanani, S.

M. Çiftan, A. Krutchkoff, S. Koozekanani, Proc. IRE Letters 50, No. 1 (1961).

Krutchkoff, A.

M. Çiftan, A. Krutchkoff, S. Koozekanani, Proc. IRE Letters 50, No. 1 (1961).

Maiman, T. H.

T. H. Maiman, Phys. Rev. 123, No. 4 (1961).

Stich, M. L.

M. L. Stich, J. Appl. Phys. 32, No. 10 (1961).

J. Appl. Phys. (1)

M. L. Stich, J. Appl. Phys. 32, No. 10 (1961).

Phys. Rev. (1)

T. H. Maiman, Phys. Rev. 123, No. 4 (1961).

Proc. IRE Letters (1)

M. Çiftan, A. Krutchkoff, S. Koozekanani, Proc. IRE Letters 50, No. 1 (1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

A model representing a Fabry-Perot interferometer type laser.

Fig. 2
Fig. 2

(a) Room temperature, 50μsec/cm sweep. (b) Room temperature, portion of (a), 2μsec/cm sweep. (c) Liquid nitrogen temperature, 50μsec/cm sweep. (d) Liquid nitrogen temperature, portion of (c), 1μsec/cm sweep.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

d 2 n ( x , t ) = Δ N ( x ) W 12 ( x ) A d x d t .
W 12 ( x ) = k M 12 n ( x ) .
d n = Δ N ( x ) k M 12 n ( x ) A x u d x
n ( x ) = n 0 exp ( x Δ N ( x ) k M 12 A x u d x ) .
n i ( x ) = [ n 1 ( l ) n 2 ( 2 l ) n i 1 ( i l l ) ] ρ i 1 × exp ( i l x Δ N i ( x ) k M 12 x u d x ) ,
( i l ) l x i l , Δ N i ( x ) = Δ N i 1 ( x ) ( 1 ρ ) n i 1 ( x ) + N 3 τ 32 δ t N 2 τ 21 δ t
δ t = l / u ,
N 3 τ 32 = 0 d ν u ( ν , t ) σ 13 ( ν ) ( N 1 N 3 ) 2 r ,
i l ( i + l ) l Δ N i ( x ) d x ( i + 1 ) l ( i + 2 ) l Δ N i + 1 ( x ) d x i = 0,1,2 .

Metrics