Abstract

A new technique has been applied in experimental work on ruby optical masers with dramatic results. The techniques involved elastically deforming the medium and thereby invoking the stress-optic effect. Strikingly, it permitted optimizing the elastic deformation of any particular ruby specimen to reduce significantly its pumping-energy requirements for the onset of maser oscillations. At the same time, the divergence of the emergent beam could be reduced by a sizable fraction to that characteristic of low-order radiation modes.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, Nature 187, 493 (1960).
    [Crossref]
  2. R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
    [Crossref]
  3. M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).
  4. P. A. Miles, First Joint Progress Report of the Laboratories for Molecular Science and Molecular Engineering, M.I.T., 29January1961, p. 29.
  5. H. E. Edgerton, Advances in Quantum Electronics (Columbia Univ. Press, New York, 1961), p. 276.
  6. R. J. Roark, Formulas for Stress and Strain (McGraw-Hill, New York, 1954).
  7. R. A. McFarlane, A summary of available data on the physical properties of synthetic sapphire Informal Report, Adolf Meller Company, Providence, Rhode Island, March1960.
  8. M. Hetenyi, Handbook of Experimental Stress Analysis (Wiley, New York, 1957).
  9. E. G. Coker, L. N. G. Filon, A Treatise on Photoelasticity (Cambridge Univ. Press, London, 1931).
  10. M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959).
  11. H. Statz, C. Luck, C. Shafer, M. Çiftan, Advances in Quantum Electronics (Columbia Univ. Press, New York1961), p. 342.
  12. A. L. Schawlow, Solid-State J. 2, 21 (1960).
  13. A. G. Fox, T. Li, Bell System Tech. J. 40, 453 (1961).
  14. A. L. Schawlow, C. H. Townes, Phys. Rev. 712, 1940 (1958).
    [Crossref]

1961 (2)

M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

A. G. Fox, T. Li, Bell System Tech. J. 40, 453 (1961).

1960 (3)

A. L. Schawlow, Solid-State J. 2, 21 (1960).

T. H. Maiman, Nature 187, 493 (1960).
[Crossref]

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

1958 (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 712, 1940 (1958).
[Crossref]

Bond, W.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959).

Çiftan, M.

M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

H. Statz, C. Luck, C. Shafer, M. Çiftan, Advances in Quantum Electronics (Columbia Univ. Press, New York1961), p. 342.

Coker, E. G.

E. G. Coker, L. N. G. Filon, A Treatise on Photoelasticity (Cambridge Univ. Press, London, 1931).

Collins, R. J.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

Edgerton, H. E.

H. E. Edgerton, Advances in Quantum Electronics (Columbia Univ. Press, New York, 1961), p. 276.

Filon, L. N. G.

E. G. Coker, L. N. G. Filon, A Treatise on Photoelasticity (Cambridge Univ. Press, London, 1931).

Fox, A. G.

A. G. Fox, T. Li, Bell System Tech. J. 40, 453 (1961).

Garrett, C. G. B.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

Hetenyi, M.

M. Hetenyi, Handbook of Experimental Stress Analysis (Wiley, New York, 1957).

Kaiser, W.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

Li, T.

A. G. Fox, T. Li, Bell System Tech. J. 40, 453 (1961).

Luck, C.

H. Statz, C. Luck, C. Shafer, M. Çiftan, Advances in Quantum Electronics (Columbia Univ. Press, New York1961), p. 342.

Luck, C. F.

M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Maiman, T. H.

T. H. Maiman, Nature 187, 493 (1960).
[Crossref]

McFarlane, R. A.

R. A. McFarlane, A summary of available data on the physical properties of synthetic sapphire Informal Report, Adolf Meller Company, Providence, Rhode Island, March1960.

Miles, P. A.

P. A. Miles, First Joint Progress Report of the Laboratories for Molecular Science and Molecular Engineering, M.I.T., 29January1961, p. 29.

Nelson, D. F.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

Roark, R. J.

R. J. Roark, Formulas for Stress and Strain (McGraw-Hill, New York, 1954).

Schawlow, A. L.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

A. L. Schawlow, Solid-State J. 2, 21 (1960).

A. L. Schawlow, C. H. Townes, Phys. Rev. 712, 1940 (1958).
[Crossref]

Shafer, C.

H. Statz, C. Luck, C. Shafer, M. Çiftan, Advances in Quantum Electronics (Columbia Univ. Press, New York1961), p. 342.

Shafer, C. G.

M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Statz, H.

M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

H. Statz, C. Luck, C. Shafer, M. Çiftan, Advances in Quantum Electronics (Columbia Univ. Press, New York1961), p. 342.

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 712, 1940 (1958).
[Crossref]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959).

Bell System Tech. J. (1)

A. G. Fox, T. Li, Bell System Tech. J. 40, 453 (1961).

Nature (1)

T. H. Maiman, Nature 187, 493 (1960).
[Crossref]

Phys. Rev. (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 712, 1940 (1958).
[Crossref]

Phys. Rev. Letters (1)

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[Crossref]

Proc. IRE (1)

M. Çiftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Solid-State J. (1)

A. L. Schawlow, Solid-State J. 2, 21 (1960).

Other (8)

P. A. Miles, First Joint Progress Report of the Laboratories for Molecular Science and Molecular Engineering, M.I.T., 29January1961, p. 29.

H. E. Edgerton, Advances in Quantum Electronics (Columbia Univ. Press, New York, 1961), p. 276.

R. J. Roark, Formulas for Stress and Strain (McGraw-Hill, New York, 1954).

R. A. McFarlane, A summary of available data on the physical properties of synthetic sapphire Informal Report, Adolf Meller Company, Providence, Rhode Island, March1960.

M. Hetenyi, Handbook of Experimental Stress Analysis (Wiley, New York, 1957).

E. G. Coker, L. N. G. Filon, A Treatise on Photoelasticity (Cambridge Univ. Press, London, 1931).

M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959).

H. Statz, C. Luck, C. Shafer, M. Çiftan, Advances in Quantum Electronics (Columbia Univ. Press, New York1961), p. 342.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Close-up of ruby optical maser assembly and flashlamps.

Fig. 2
Fig. 2

Over-all view of apparatus.

Fig. 3
Fig. 3

(a) Near-field pattern of ruby optical maser No. 1 for zero load, 285 joules input. (b) Far-field pattern of (a).

Fig. 4
Fig. 4

(a) Near-field pattern of ruby optical maser No. 1 for 43-gm load, 250 joules input. (b) Far-field pattern of (a).

Fig. 5
Fig. 5

(a) Near-field pattern of ruby optical maser No. 1 for 91-gm load (the condition for lowest threshold), 194 joules input. (b) Far-field pattern of (a).

Fig. 6
Fig. 6

Far-field pattern of Fig. 5 (b) with 285 joules input.

Fig. 7
Fig. 7

(a) Near-field pattern of ruby optical maser No. 1 for 129-gm load, 214 joules input. (b) Far-field pattern of (a).

Fig. 8
Fig. 8

(a) Near-field pattern of ruby optical maser No. 1 for 150-gm load, 260 joules input. (b) Far-field pattern of (a).

Fig. 9
Fig. 9

(a) Near-field pattern of ruby optical maser No. 2 for zero load, 306 joules input. (b) Far-field pattern of (a).

Fig. 10
Fig. 10

(a) Near-field pattern of ruby optical maser No. 2 for 91-gm load, 242 joules input. (b) Far-field pattern of (a).

Fig. 11
Fig. 11

(a) Near-field pattern of ruby optical maser No. 2 for 150-gm load, 196 joules input. (b) Far-field pattern of (a).

Fig. 12
Fig. 12

(a) Near-field pattern of ruby optical maser No. 2 for 188-gm load (the condition for lowest threshold), 196 joules input. (b) Far-field pattern of (a).

Fig. 13
Fig. 13

(a) Near-field pattern of Fig. 12(a) with 228 joules input. (b) Far-field pattern of (a).

Fig. 14
Fig. 14

(a) Near-field pattern of ruby optical maser No. 2 for 300-gm load, 250 joules input. (b) Far-field pattern of (a).

Fig. 15
Fig. 15

(a) Near-field pattern of ruby optical maser No. 2 rotated 90°, for 91-gm load, 314 joules input. (b) Far-field pattern of (a).

Fig. 16
Fig. 16

(a) Near-field pattern of ruby optical maser No. 3 for zero load, 207 joules input. (b) Far-field pattern of (a).

Fig. 17
Fig. 17

(a) Near-field pattern of Fig. 16 (a) with 250 joules input. (b) Far-field pattern of (a).

Fig. 18
Fig. 18

(a) Near-field pattern of ruby optical maser No. 3 for 22-gm load, 185 joules input. (b) Far-field pattern of (a).

Fig. 19
Fig. 19

(a) Near-field pattern of ruby optical maser No. 3 for 32-gm load, 185 joules input. (b) Far-field pattern of (a).

Fig. 20
Fig. 20

(a) Near-field pattern of ruby optical maser No. 3 for 43-gm load (the condition for lowest threshold), 185 joules input. (b) Far-field pattern of (a).

Fig. 21
Fig. 21

(a) Near-field pattern of Fig. 20 (a) with 250 joules input. (b) Far-field pattern of (a).

Fig. 22
Fig. 22

(a) Near-field pattern of ruby optical maser No. 3 for 150-gm load, 285 joules input. (b) Far-field pattern of (a).

Fig. 23
Fig. 23

(a) Near-field pattern of ruby optical maser No. 3 rotated 90°, for 150-gm load, 285 joules input. (b) Far-field pattern of (a).

Tables (3)

Tables Icon

Table I Conditions for Field Photographs of Ruby Optical Maser No. 1

Tables Icon

Table II Conditions for Field Photographs of Ruby Optical Maser No. 2

Tables Icon

Table III Conditions for Field Photographs of Ruby Optical Maser No. 3

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = 1 2 W l 2 E I ,
y = z = ν σ x E ,
n y n = c 1 σ z + c 2 ( σ y + σ x ) , n z n = c 1 σ y + c 2 ( σ z + σ x ) ,
α = n λ d ,
D = n λ f d ,
D p 2 = 4 n λ 0 f 2 n 2 h ( p 1 ) ,

Metrics