Abstract

The development of a thermal imaging device which operates on the principle of differential evaporation (or condensation) of oil on a thin membrane is described. Section I,A summarizes the requirements of any thermal imaging method and develops the theory as applied to the particular case of the Evaporograph, emphasizing the consideration of scene temperatures near 20°C. It is shown that the greatest component of irradiance at the membrane is utilized in the evaporation of the oil layer. A presentation system which forms a visible image based on the phenomenon of light interference to detect differences in the thickness of the oil film is described. Theoretical calculations based on this system, assuming a reasonable minimum detectable thickness difference, indicate that a temperature difference of 1°C in the scene can be detected with an f = 2 optical system. Experimental results confirm this. The application of the Evaporograph to quantitative measurements is indicated. Section I,B describes experimental work on the three components of the Evaporograph, the infrared optical system, the transducer or cell, and the visual optical system. The two commercial models which have evolved from this work are described. These Evaporographs can detect a temperature difference of 1°C from a 20°C background and have a resolution of 10 lines per mm. Various applications are pictured and described.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. K. Weihe, Proc. Inst. Radio Engrs. 47, 1593 (1959).
  2. W. Herschel, Phil. Trans. Roy. Soc. London Pt. II, 90, 225 (1800).
  3. J. F. W. Herschel, Phil. Trans. Roy. Soc. London 131, 52 (1840).
  4. M. Czerny, Z. Physik 53, 1 (1929).
    [CrossRef]
  5. M. Czerny, P. Mollet, Z. tech. Physik 18, 582 (1937).
  6. D. Z. Robinson, A. P. DiMattia, G. W. McDaniel, J. Opt. Soc. Am. 47, 340 (1957) (Abstract only).
  7. C. Hilsum, W. R. Harding, Infrared Phys. 1, 67 (1961).
    [CrossRef]
  8. M. Garbuny, T. P. Vogl, J. R. Hansen, J. Opt. Soc. Am. 51, 261, (1961).
    [CrossRef]
  9. L. Harris, R. T. McGinnies, J. Opt. Soc. Am. 38, 582 (1948).
    [CrossRef]
  10. I. Langmuir, Phys. Rev. 2, 329 (1913).
    [CrossRef]
  11. I. Langmuir, G. M. J. Mackay, Phys. Rev. 4, 377 (1914).
    [CrossRef]
  12. S. Glasstone, Textbook of Physical Chemistry, 2nd ed., p. 443. Van Nostrand, New York, 1946.
  13. H. Kubota, T. Ara, H. Saito, J. Opt. Soc. Am. 41, 537 (1951).
    [CrossRef]
  14. W. R. J. Brown, D. L. MacAdam, J. Opt. Soc. Am. 39, 808 (1949).
    [CrossRef] [PubMed]
  15. M. Czerny, P. Mollet, Z. Physik 108, 85 (1937).
    [CrossRef]
  16. L. Harris, E. A. Johnson, Rev. Sci. Instr. 4, 454 (1933).
    [CrossRef]
  17. G. Hass, M. E. McFarland, J. Appl. Phys. 21, 435 (1950).
    [CrossRef]
  18. K. Strohmaier, Z. Naturforsch. 6a, 508 (1951).
  19. L. N. Hadley, D. M. Dennison, J. Opt. Soc. Am. 37, 451 (1947).
    [CrossRef]
  20. D. Z. Robinson, G. W. McDaniel, A. P. DiMattia, U.S. Patent2,855,522.
  21. R. N. Lawson, Can. Services Med. J. 13, 517 (1957).

1961

1959

W. K. Weihe, Proc. Inst. Radio Engrs. 47, 1593 (1959).

1957

D. Z. Robinson, A. P. DiMattia, G. W. McDaniel, J. Opt. Soc. Am. 47, 340 (1957) (Abstract only).

R. N. Lawson, Can. Services Med. J. 13, 517 (1957).

1951

H. Kubota, T. Ara, H. Saito, J. Opt. Soc. Am. 41, 537 (1951).
[CrossRef]

K. Strohmaier, Z. Naturforsch. 6a, 508 (1951).

1950

G. Hass, M. E. McFarland, J. Appl. Phys. 21, 435 (1950).
[CrossRef]

1949

1948

1947

1937

M. Czerny, P. Mollet, Z. Physik 108, 85 (1937).
[CrossRef]

M. Czerny, P. Mollet, Z. tech. Physik 18, 582 (1937).

1933

L. Harris, E. A. Johnson, Rev. Sci. Instr. 4, 454 (1933).
[CrossRef]

1929

M. Czerny, Z. Physik 53, 1 (1929).
[CrossRef]

1914

I. Langmuir, G. M. J. Mackay, Phys. Rev. 4, 377 (1914).
[CrossRef]

1913

I. Langmuir, Phys. Rev. 2, 329 (1913).
[CrossRef]

1840

J. F. W. Herschel, Phil. Trans. Roy. Soc. London 131, 52 (1840).

1800

W. Herschel, Phil. Trans. Roy. Soc. London Pt. II, 90, 225 (1800).

Ara, T.

Brown, W. R. J.

Czerny, M.

M. Czerny, P. Mollet, Z. Physik 108, 85 (1937).
[CrossRef]

M. Czerny, P. Mollet, Z. tech. Physik 18, 582 (1937).

M. Czerny, Z. Physik 53, 1 (1929).
[CrossRef]

Dennison, D. M.

DiMattia, A. P.

D. Z. Robinson, A. P. DiMattia, G. W. McDaniel, J. Opt. Soc. Am. 47, 340 (1957) (Abstract only).

D. Z. Robinson, G. W. McDaniel, A. P. DiMattia, U.S. Patent2,855,522.

Garbuny, M.

Glasstone, S.

S. Glasstone, Textbook of Physical Chemistry, 2nd ed., p. 443. Van Nostrand, New York, 1946.

Hadley, L. N.

Hansen, J. R.

Harding, W. R.

C. Hilsum, W. R. Harding, Infrared Phys. 1, 67 (1961).
[CrossRef]

Harris, L.

L. Harris, R. T. McGinnies, J. Opt. Soc. Am. 38, 582 (1948).
[CrossRef]

L. Harris, E. A. Johnson, Rev. Sci. Instr. 4, 454 (1933).
[CrossRef]

Hass, G.

G. Hass, M. E. McFarland, J. Appl. Phys. 21, 435 (1950).
[CrossRef]

Herschel, J. F. W.

J. F. W. Herschel, Phil. Trans. Roy. Soc. London 131, 52 (1840).

Herschel, W.

W. Herschel, Phil. Trans. Roy. Soc. London Pt. II, 90, 225 (1800).

Hilsum, C.

C. Hilsum, W. R. Harding, Infrared Phys. 1, 67 (1961).
[CrossRef]

Johnson, E. A.

L. Harris, E. A. Johnson, Rev. Sci. Instr. 4, 454 (1933).
[CrossRef]

Kubota, H.

Langmuir, I.

I. Langmuir, G. M. J. Mackay, Phys. Rev. 4, 377 (1914).
[CrossRef]

I. Langmuir, Phys. Rev. 2, 329 (1913).
[CrossRef]

Lawson, R. N.

R. N. Lawson, Can. Services Med. J. 13, 517 (1957).

MacAdam, D. L.

Mackay, G. M. J.

I. Langmuir, G. M. J. Mackay, Phys. Rev. 4, 377 (1914).
[CrossRef]

McDaniel, G. W.

D. Z. Robinson, A. P. DiMattia, G. W. McDaniel, J. Opt. Soc. Am. 47, 340 (1957) (Abstract only).

D. Z. Robinson, G. W. McDaniel, A. P. DiMattia, U.S. Patent2,855,522.

McFarland, M. E.

G. Hass, M. E. McFarland, J. Appl. Phys. 21, 435 (1950).
[CrossRef]

McGinnies, R. T.

Mollet, P.

M. Czerny, P. Mollet, Z. tech. Physik 18, 582 (1937).

M. Czerny, P. Mollet, Z. Physik 108, 85 (1937).
[CrossRef]

Robinson, D. Z.

D. Z. Robinson, A. P. DiMattia, G. W. McDaniel, J. Opt. Soc. Am. 47, 340 (1957) (Abstract only).

D. Z. Robinson, G. W. McDaniel, A. P. DiMattia, U.S. Patent2,855,522.

Saito, H.

Strohmaier, K.

K. Strohmaier, Z. Naturforsch. 6a, 508 (1951).

Vogl, T. P.

Weihe, W. K.

W. K. Weihe, Proc. Inst. Radio Engrs. 47, 1593 (1959).

Can. Services Med. J.

R. N. Lawson, Can. Services Med. J. 13, 517 (1957).

Infrared Phys.

C. Hilsum, W. R. Harding, Infrared Phys. 1, 67 (1961).
[CrossRef]

J. Appl. Phys.

G. Hass, M. E. McFarland, J. Appl. Phys. 21, 435 (1950).
[CrossRef]

J. Opt. Soc. Am.

Phil. Trans. Roy. Soc. London

W. Herschel, Phil. Trans. Roy. Soc. London Pt. II, 90, 225 (1800).

J. F. W. Herschel, Phil. Trans. Roy. Soc. London 131, 52 (1840).

Phys. Rev.

I. Langmuir, Phys. Rev. 2, 329 (1913).
[CrossRef]

I. Langmuir, G. M. J. Mackay, Phys. Rev. 4, 377 (1914).
[CrossRef]

Proc. Inst. Radio Engrs.

W. K. Weihe, Proc. Inst. Radio Engrs. 47, 1593 (1959).

Rev. Sci. Instr.

L. Harris, E. A. Johnson, Rev. Sci. Instr. 4, 454 (1933).
[CrossRef]

Z. Naturforsch.

K. Strohmaier, Z. Naturforsch. 6a, 508 (1951).

Z. Physik

M. Czerny, P. Mollet, Z. Physik 108, 85 (1937).
[CrossRef]

M. Czerny, Z. Physik 53, 1 (1929).
[CrossRef]

Z. tech. Physik

M. Czerny, P. Mollet, Z. tech. Physik 18, 582 (1937).

Other

S. Glasstone, Textbook of Physical Chemistry, 2nd ed., p. 443. Van Nostrand, New York, 1946.

D. Z. Robinson, G. W. McDaniel, A. P. DiMattia, U.S. Patent2,855,522.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Simplified schematic diagram of Evaporograph.

Fig. 2
Fig. 2

Simplified schematic diagram of Evaporograph cell.

Fig. 3
Fig. 3

Schematic diagram of power balance at Evaporograph membrane.

Fig. 4
Fig. 4

Relation between optical path difference and interference colors.

Fig. 5
Fig. 5

Oil film thickness and photographic density as a function of condensation time. (White light and color film.)

Fig. 6
Fig. 6

Model KR-1 Evaporograph.

Fig. 7
Fig. 7

Schematic diagram of the optical system of the model KR-1 Evaporograph.

Fig. 8
Fig. 8

Evaporograph image of a girl holding a glass of cold water.

Fig. 9
Fig. 9

Evaporograph image of a seated man afflicted with phlebitus of the left leg.

Fig. 10
Fig. 10

Evaporograph image of Boston Harbor at night.

Fig. 11
Fig. 11

Evaporograph image of a filament of Fiberglas as it is being drawn.

Tables (3)

Tables Icon

Table I Physical Constants of Substituted Decanes

Tables Icon

Table II Energies Required for Minimum Detectable Thickness Difference

Tables Icon

Table III Figure of Merit for Various Materials

Equations (38)

Equations on this page are rendered with MathJax. Learn more.

E d a T { 0 τ A ( λ ) τ 0 ( λ ) α 1 ( 1 ) ( λ ) [ T ( λ ) W λ ( T T ) + ρ T ( λ ) W λ ( T A ) ] d λ + 0 τ 0 ( λ ) α 1 ( λ ) ( 2 ) A ( λ ) W λ ( T A ) d λ + 1 π 0 0 ( λ ) α 1 ( 3 ) ( λ ) W λ ( T 1 ) d λ } + d a T ( 1 E π ) ( 4 ) 0 α 1 ( λ ) W λ ( T 1 ) d λ + d a T 0 α 2 ( 5 ) ( λ ) W λ ( T 2 ) d λ + d a T 0 α 2 ( λ ) H λ ( 6 ) ( V ) d λ + d a T [ 0 1 ( λ ) W λ ( T T ) d λ + 0 2 ( λ ) W λ ( T T ) d λ ( 7 ) ] + q 4 + q 6 + q 7 = 0 ,
E 0 τ A ( λ ) τ 0 ( λ ) α 1 ( λ ) T ( λ ) [ W λ ( T T ) W λ ( T B ) ] d λ = 0 [ 1 ( λ ) + 2 ( λ ) ] [ W λ ( T T ) W λ ( T B ) ] d λ + Δ q 4 + Δ q 7 .
T T = T B + Δ T where Δ T T B .
τ A = 0 τ A ( λ ) W λ ( T T ) d λ 0 W λ ( T T ) d λ .
4 E τ A τ 0 α 1 T σ T B 3 Δ T = 4 ( 1 + 2 ) σ T B 3 Δ T + Δ q 4 + Δ q 7
Δ T = 4 E τ A τ 0 α 1 T σ T B 3 Δ T Δ q 4 Δ q 7 4 ( 1 + 2 ) σ T B 3 .
Δ T = 4 ( 1 + 2 ) σ T B 3 Δ T + Δ q 4 + Δ q 7 4 E τ A τ 0 α 1 T σ T B 3 .
Q = 0 α 1 ( λ ) H λ Δ t d λ = Q 1 + Q 2 + Q 3 + Q 4 + Q 5 + Q 6 + Q 7 ,
Q = ( S 1 δ 1 d 1 + S 2 δ 2 d 2 + S 3 δ 3 d 3 ) Δ T + Q 4 + Q 5 + Q 7 ,
Q 5 = ( 1 + 2 ) σ T T 4 Δ t ( 1 + 2 ) σ T B 4 Δ t ,
Q 5 = 1.6 σ Δ t [ ( T B × Δ T ) 4 T B 4 ] 6.4 σ T B 3 Δ T Δ t .
Q = ( S 1 δ 1 d 1 + S 2 δ 2 d 2 + S 3 δ 3 d 3 ) Δ T + 6.4 σ T B 3 Δ T Δ t + Q 4 + Q 7 .
Q 4 = Δ d δ 3 L ,
m ( T B ) = θ ( M / 2 π R T B ) 1 2 ,
Δ m = m ( T B + Δ T ) m ( T B ) = ( M 2 π R ) 1 2 Δ T T B θ T B .
Q 4 = Δ m Δ t L = L Δ t Δ T ( M 2 π R ) 1 / 2 T B θ T B .
Q 4 = 5.84 × 10 2 Δ t Δ T L M T B θ T B .
θ T B = θ L M R T B 2 ,
T B θ T B = θ ( 2 L M R T B ) 2 R T B 5 2 .
Q 4 = 2.92 × 10 2 L M θ Δ T Δ t ( 2 L M R T B ) / R T B 5 2 .
Δ T = R Δ d δ 3 T B 5 2 2.92 × 10 2 Δ t M θ ( 2 L M R T B ) .
ln θ = C a T .
m a = θ a ( M a / 2 π R T B ) 1 2 ,
m a = 1.8 × 10 4 gm cm 2 sec 1 .
Q 7 = 2 m a Δ T Δ t k a ,
Q 7 = 9 × 10 4 Δ T cal cm 2 .
T = 1 α 1 = 1 = 2 = 0.8 E = 0.059 ( for an f = 2 optical system ) τ A τ 0 = 0.8 .
Δ T = 1.8 ° C .
M = L δ 3 n ,
Δ d Δ T .
Δ X n = A n Δ t ,
X 0 X R = K W R Δ t ,
X 0 X CR = K W CR Δ t ,
( W R W CR ) Δ t = K ( X CR X R ) .
( W T W C T ) Δ t = k ( X C T X T ) .
X = K 1 D + K 2 ,
( W R W CR ) Δ t = K 1 ( D CR D R )
( W T W C T ) Δ t = K 1 ( D C T D T ) .

Metrics