Abstract

After a brief discussion on the quality factor of a parallel-plate interferometer, threshold conditions of oscillation for a beam maser, a solid-state maser, and a gas maser are calculated from a unified theory. Operation of a gas maser on the line broadened by both collision and the Doppler effect is discussed. The rate of producing population inversion is calculated in terms of gas pressure, quantum efficiency, saturation parameter, and the intensity of excitation. Finally, the optimum condition is discussed.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Javan, W. R. Bennett, D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
    [CrossRef]
  2. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
    [CrossRef]
  3. K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 55, 1 (1961).
  4. K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo)55, No. 3, (1961), to be published.
  5. T. Yajima, J. Phys. Soc. Japan 16 (1594); ibid. No. 9 (1961).
  6. K. Shimoda, T. C. Wang, C. H. Townes, Phys. Rev. 102, 1308 (1956).
    [CrossRef]
  7. R. Karplus, J. Schwinger, Phys. Rev. 73, 1020 (1948).
    [CrossRef]

1961 (2)

A. Javan, W. R. Bennett, D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
[CrossRef]

K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 55, 1 (1961).

1958 (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

1956 (1)

K. Shimoda, T. C. Wang, C. H. Townes, Phys. Rev. 102, 1308 (1956).
[CrossRef]

1948 (1)

R. Karplus, J. Schwinger, Phys. Rev. 73, 1020 (1948).
[CrossRef]

1594 (1)

T. Yajima, J. Phys. Soc. Japan 16 (1594); ibid. No. 9 (1961).

Bennett, W. R.

A. Javan, W. R. Bennett, D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
[CrossRef]

Herriott, D. R.

A. Javan, W. R. Bennett, D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
[CrossRef]

Javan, A.

A. Javan, W. R. Bennett, D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
[CrossRef]

Karplus, R.

R. Karplus, J. Schwinger, Phys. Rev. 73, 1020 (1948).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Schwinger, J.

R. Karplus, J. Schwinger, Phys. Rev. 73, 1020 (1948).
[CrossRef]

Shimoda, K.

K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 55, 1 (1961).

K. Shimoda, T. C. Wang, C. H. Townes, Phys. Rev. 102, 1308 (1956).
[CrossRef]

K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo)55, No. 3, (1961), to be published.

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

K. Shimoda, T. C. Wang, C. H. Townes, Phys. Rev. 102, 1308 (1956).
[CrossRef]

Wang, T. C.

K. Shimoda, T. C. Wang, C. H. Townes, Phys. Rev. 102, 1308 (1956).
[CrossRef]

Yajima, T.

T. Yajima, J. Phys. Soc. Japan 16 (1594); ibid. No. 9 (1961).

J. Phys. Soc. Japan (1)

T. Yajima, J. Phys. Soc. Japan 16 (1594); ibid. No. 9 (1961).

Phys. Rev. (3)

K. Shimoda, T. C. Wang, C. H. Townes, Phys. Rev. 102, 1308 (1956).
[CrossRef]

R. Karplus, J. Schwinger, Phys. Rev. 73, 1020 (1948).
[CrossRef]

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Phys. Rev. Letters (1)

A. Javan, W. R. Bennett, D. R. Herriott, Phys. Rev. Letters 6, 106 (1961).
[CrossRef]

Sci. Papers Inst. Phys. Chem. Research (Tokyo) (1)

K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 55, 1 (1961).

Other (1)

K. Shimoda, Sci. Papers Inst. Phys. Chem. Research (Tokyo)55, No. 3, (1961), to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Energy levels of atoms A and B.

Fig. 2
Fig. 2

Graphical representation of p2n0/nth and p2n0/nex versus p2.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

R = exp ( ω 0 Q d c ) 1 ω 0 Q d c ,
Q 0 = 2 π d λ ( 1 R ) .
d ( 1 cos θ ) λ 2 π , or θ = λ π d .
1 Q d = P d ω 0 W 2 λ π L λ π d .
1 Q d λ 2 4 π L 2 ( n + m ) .
1 Q d λ 2 2 π L 2 .
Δ P = ω 0 W Q = ν 0 4 Q E 2 V
Δ P c = n h ν 0 ( E μ ¯ 2 ћ ) 2 sin 2 δ δ 2 t 2 av ,
n th = 3 h V 4 π 2 μ 2 Q sin 2 δ δ 2 t 2 av 1 .
δ = π ν 0 υ t t c = π υ t υ L λ ,
sin 2 δ δ 2 t 2 av L λ 2 υ υ t ,
n th = 3 h V 2 π 2 μ 2 Q · υ L ( υ 2 L + υ t λ ) .
sin 2 δ δ 2 t 2 av = t 2 av = 2 τ 2 .
n th = 3 h V 8 π 2 μ 2 Q τ 2 ,
N th = n th τ = 3 h V Δ ν 4 π μ 2 Q .
sin 2 δ δ 2 t 2 av = 2 π α τ 0 0 sin 2 ( π ν 0 υ t / c ) ( π ν 0 υ / c ) 2 e υ 2 / α 2 e t / τ d υ d t .
sin 2 δ δ 2 t 2 av = 4 τ 2 p 2 π 0 e x 2 p 2 + x 2 d x = 4 τ 2 p e p 2 p e x 2 d x ,
p = c 2 π α ν 0 τ
n th = 3 h V 2 2 μ 2 Q ( α ν 0 c ) 2 p exp ( p 2 ) 1 Φ ( p ) ,
Φ ( p ) = 2 π 0 p e x 2 d x
n ex = γ I 1 + β I p 2 ,
d N A * d t = N A N B * w e N A * N B w d N A * τ A ,
N B w d = 1 τ A and 1 τ = 1 τ A + 1 τ A .
n ex = N A N B * w e = N A * τ .
d N A d t = N A N B * w e + N A ( 0 ) N A τ ,
n ex = N A w e I τ B = N A ( 0 ) w e I τ B 1 + w e I τ B τ .
( 1 r ) n ex > n th .
( 1 r ) n 0 γ ( β + p 2 I ) < p exp ( p 2 ) [ 1 Φ ( p ) ] ,
n 0 = 3 h V 2 2 μ 2 Q ( α ν 0 c ) 2 .
( 1 r ) n 0 β γ = 3 h V 8 π 5 2 μ 2 Q C A ,
( 1 r ) n 0 β γ I = n 0 τ w e C A τ B I ,
n ex τ N A > n th τ ,

Metrics