Abstract

A standard oxide-cathode S-band traveling-wave tube has been used as an improvised microwave phototube to study the coherent light output from a ruby optical maser (laser). The laser’s output consists of simultaneous, discrete optical components separated by the mode interval of 600 Mc/s between axial modes in the 12.5 cm laser rod. These components heterodyne in the TWT cathode to produce easily observed microwave outputs within the TWT bandwidth, corresponding to photobeats between third-through seventh-nearest-neighbor axial modes. This technique is a powerful tool for the study of optical masers, and also has important implications for communications via microwave-modulated light.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, Phys. Rev. 99, 1691 (1955); A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).
    [CrossRef]
  2. M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).
  3. G. Dacey, Bell Telephone Laboratories, private communication.
  4. Private communication from B. P. Stoicheff, National Research Council, Ottawa, Canada.
  5. A. E. Siegman, B. J. McMurtry, “Microwave phototubes,” Conference on Electron Device Research, Troy, New York, June 1961 (unpublished); A. E. Siegman, “Microwave phototubes and light demodulators,” 1961 NEREM Meeting, Boston, Massachusetts, November1961 (to be published).

1961

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

1955

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, Phys. Rev. 99, 1691 (1955); A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).
[CrossRef]

Ciftan, M.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Dacey, G.

G. Dacey, Bell Telephone Laboratories, private communication.

Forrester, A. T.

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, Phys. Rev. 99, 1691 (1955); A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).
[CrossRef]

Gudmundsen, R. A.

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, Phys. Rev. 99, 1691 (1955); A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).
[CrossRef]

Johnson, P. O.

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, Phys. Rev. 99, 1691 (1955); A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).
[CrossRef]

Luck, C. F.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

McMurtry, B. J.

A. E. Siegman, B. J. McMurtry, “Microwave phototubes,” Conference on Electron Device Research, Troy, New York, June 1961 (unpublished); A. E. Siegman, “Microwave phototubes and light demodulators,” 1961 NEREM Meeting, Boston, Massachusetts, November1961 (to be published).

Shafer, C. G.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Siegman, A. E.

A. E. Siegman, B. J. McMurtry, “Microwave phototubes,” Conference on Electron Device Research, Troy, New York, June 1961 (unpublished); A. E. Siegman, “Microwave phototubes and light demodulators,” 1961 NEREM Meeting, Boston, Massachusetts, November1961 (to be published).

Statz, H.

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Stoicheff, B. P.

Private communication from B. P. Stoicheff, National Research Council, Ottawa, Canada.

Phys. Rev.

A. T. Forrester, R. A. Gudmundsen, P. O. Johnson, Phys. Rev. 99, 1691 (1955); A. T. Forrester, J. Opt. Soc. Am. 51, 253 (1961).
[CrossRef]

Proc. IRE

M. Ciftan, C. F. Luck, C. G. Shafer, H. Statz, Proc. IRE 49, 960 (1961).

Other

G. Dacey, Bell Telephone Laboratories, private communication.

Private communication from B. P. Stoicheff, National Research Council, Ottawa, Canada.

A. E. Siegman, B. J. McMurtry, “Microwave phototubes,” Conference on Electron Device Research, Troy, New York, June 1961 (unpublished); A. E. Siegman, “Microwave phototubes and light demodulators,” 1961 NEREM Meeting, Boston, Massachusetts, November1961 (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Upper trace: light output from the laser. Lower trace: microwave output from the TWT helix. Sweep speed: 100 μsec/div. Sweep triggers at start of laser pumping flash.

Fig. 2
Fig. 2

Upper trace: light output from the laser. Lower trace: microwave output from the TWT helix at one particular frequency. Sweep speed: 10 μsec/div. Sweep interval is near middle of laser oscillation period.

Metrics