Abstract

A pulsed ruby optical maser has been constructed which allows the beams from opposite ends to be superimposed. Interference fringes have been observed which can be interpreted to show that the coherence predicted by theory is, in fact, obtained, and also that the relative spatial distribution of the light over the ruby face is essentially constant even though the light is emitted in short bursts.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
    [CrossRef]
  2. A. G. Fox, T. Li, Bell System Tech. J. 40, 489 (1961); Proc. I.R.E. 48, 1904 (1960).
  3. P. Kisliuk, W. S. Boyle, Proc. IRE, to be published.
  4. R. J. Collins, P. Kisliuk, J. Appl. Phys., to be published.
  5. D. F. Nelson, R. J. Collins, J. Appl. Phys. 32, 739 (1961).
    [CrossRef]
  6. R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
    [CrossRef]
  7. D. F. Nelson, R. J. Collins, Second Conference on Quantum Electronics, Monterey, Calif., 1961; to be published in “Advances in Quantum Electronics.”

1961 (2)

A. G. Fox, T. Li, Bell System Tech. J. 40, 489 (1961); Proc. I.R.E. 48, 1904 (1960).

D. F. Nelson, R. J. Collins, J. Appl. Phys. 32, 739 (1961).
[CrossRef]

1960 (1)

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

1958 (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Bond, W.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

Boyle, W. S.

P. Kisliuk, W. S. Boyle, Proc. IRE, to be published.

Collins, R. J.

D. F. Nelson, R. J. Collins, J. Appl. Phys. 32, 739 (1961).
[CrossRef]

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

R. J. Collins, P. Kisliuk, J. Appl. Phys., to be published.

D. F. Nelson, R. J. Collins, Second Conference on Quantum Electronics, Monterey, Calif., 1961; to be published in “Advances in Quantum Electronics.”

Fox, A. G.

A. G. Fox, T. Li, Bell System Tech. J. 40, 489 (1961); Proc. I.R.E. 48, 1904 (1960).

Garrett, C. G. B.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

Kaiser, W.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

Kisliuk, P.

R. J. Collins, P. Kisliuk, J. Appl. Phys., to be published.

P. Kisliuk, W. S. Boyle, Proc. IRE, to be published.

Li, T.

A. G. Fox, T. Li, Bell System Tech. J. 40, 489 (1961); Proc. I.R.E. 48, 1904 (1960).

Nelson, D. F.

D. F. Nelson, R. J. Collins, J. Appl. Phys. 32, 739 (1961).
[CrossRef]

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

D. F. Nelson, R. J. Collins, Second Conference on Quantum Electronics, Monterey, Calif., 1961; to be published in “Advances in Quantum Electronics.”

Schawlow, A. L.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Bell System Tech. J. (1)

A. G. Fox, T. Li, Bell System Tech. J. 40, 489 (1961); Proc. I.R.E. 48, 1904 (1960).

J. Appl. Phys. (1)

D. F. Nelson, R. J. Collins, J. Appl. Phys. 32, 739 (1961).
[CrossRef]

Phys. Rev. (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Phys. Rev. Letters (1)

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. Bond, C. G. B. Garrett, W. Kaiser, Phys. Rev. Letters 5, 303 (1960).
[CrossRef]

Other (3)

D. F. Nelson, R. J. Collins, Second Conference on Quantum Electronics, Monterey, Calif., 1961; to be published in “Advances in Quantum Electronics.”

P. Kisliuk, W. S. Boyle, Proc. IRE, to be published.

R. J. Collins, P. Kisliuk, J. Appl. Phys., to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The experimental arrangements. In the case of arrangement (b) fringes were not observed when the two beams were made as nearly collinear as possible, but only when two of the mirrors were displaced so as to combine the beams at a slight angle.

Fig. 2
Fig. 2

Demonstration of interference fringes obtained with the arrangement of Fig. 1(a). (a)—Beam from left-hand side only. Diffuse lines are probably due to interference between beams from the front and back surfaces of the partial reflectors (glass optical flats with antireflection coating on rear surface). Small concentric circles are from the interference of spherical waves from dust particles on the filter with the incident plane waves. These serve, incidentally, as markers to identify equivalent portions of the film, (b)—Beam from right-hand side only. (c)—Beams from both sides superimposed to show interference fringes. Actual spacing on film is 0.012 cm which agrees with that expected within experimental error.

Fig. 3
Fig. 3

Interference fringes obtained with the arrangement of Fig. 1(b).

Fig. 4
Fig. 4

A. Schematic diagram of conventional light source with baffles to limit beam to same solid angle as the maser beam. ×’s represent individual atoms emitting light of independent phase, resulting in superposition of many fringe systems and, therefore, no observable fringes. B. Excited atoms in maser are stimulated to emit light in such phase as to enhance standing waves in Fabry-Perot modes of the resonator, resulting in coherence of extracted beam and the presence of observable fringes.

Fig. 5
Fig. 5

A photograph of one end of the ruby exposed for one discharge of the flash tube under conditions where maser action takes place. (Actual diameter of ruby face, 0.5 cm.)

Fig. 6
Fig. 6

Solid lines show hypothetical variation of intensity across the diameter of the ruby face and the corresponding fringes. Dotted lines show a possible situation at a later time which, if each contributed equally, would obscure the solid fringes.

Fig. 7
Fig. 7

Diagram to show a plausible explanation of irregularities in the fringes. If there is a difference in phase at the ruby face between beams 1 and 2 (and, therefore, between beams 1 and 2), the pattern will be clear and regular only where the film is exposed to but one beam from each end. Irregularities will occur in regions exposed to both 1 and 2 or both 1 and 2, since the relative portions of each will vary with position.

Metrics