Abstract

The properties of crystals used in solid state masers are discussed. A table is presented summarizing this information for present maser materials. It is pointed out that further material research needs to be done to improve the performance of masers and extend their frequency range.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Wittke, Proc. IRE 45, 291 (1957).
    [CrossRef]
  2. N. Bloembergen, Phys. Rev. 104, 324 (1956).
    [CrossRef]
  3. J. Weber, Revs. Modern Phys. 31, 681 (1959).
    [CrossRef]
  4. G. Troup, Masers (Wiley, New York, 1959).
  5. J. R. Singer, Masers (Wiley, New York, 1959).
  6. A. A. Vuylsteke, Elements of Maser Theory (Van Nostrand, Princeton, New Jersey, 1960).
  7. H. E. D. Scovil, G. Feher, H. Seidel, Phys. Rev. 105, 2, 762 (1957).
    [CrossRef]
  8. A. L. McWhorter, J. W. Meyer, Phys. Rev. 109, 312 (1958); R. M. Kingston, Lincoln Laboratory, M.I.T., Report M35-79; J. O. Artman, N. Bloembergen, S. Shapiro, Phys. Rev. 109, 1392 (1958); S. H. Autler, N. McAvoy, Phys. Rev. 110, 280 (1958).
    [CrossRef]
  9. R. W. DeGrasse, E. O. Schulz-DuBois, H. E. D. Scovil, Bell System Tech. J. 38, 305 (1959).
  10. E. S. Sabisky, H. J. Gerritsen, Proc. IRE 49, 1329 (1961).
  11. S. Okwit, J. G. Smith, Proc. IRE 49, 1210 (1961).
  12. F. R. Arams, S. Okwit, Proc. IRE 47, 992 (1959).
  13. J. M. Minkowski, Phys. Rev. 119, 1577 (1960).
    [CrossRef]
  14. F. R. Arams, Proc. IRE 47, 108 (1960).
  15. S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).
  16. T. H. Maiman, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 330.
  17. B. Bleaney, K. W. H. Stevens, Reports on Progress in Physics (Physical Society, London, 1953).
  18. K. D. Bowers, J. Owen, Reports on Progress in Physics (Physical Society, London, 1955).
  19. B. Bleaney, Proc. Phys. Soc. 73, 937 (1959).
    [CrossRef]
  20. H. J. Gerritsen, H. R. Lewis, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 385.
  21. A. Okaya, Proc. IRE 48, 1921 (1960).
  22. G. Makhov, Bull. Am. Phys. Soc. 4, 21 (1959).
  23. (a) F. W. de Vryer, C. J. Gorter, Physica 18, 549 (1952); (b) W. Mims, J. D. McGee (unpublished);(c) T. E. Geusic, Phys. Rev. 118, 129 (1960).
    [CrossRef]
  24. N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
    [CrossRef]
  25. D. L. Carter, J. Appl. Phys. (1961) (to be published).
  26. J. Weber, Phys. Rev. 108, 537 (1957).
    [CrossRef]
  27. Bloembergen, Phys. Rev. Letters 2, 84 (1959).
    [CrossRef]

1961

E. S. Sabisky, H. J. Gerritsen, Proc. IRE 49, 1329 (1961).

S. Okwit, J. G. Smith, Proc. IRE 49, 1210 (1961).

1960

J. M. Minkowski, Phys. Rev. 119, 1577 (1960).
[CrossRef]

F. R. Arams, Proc. IRE 47, 108 (1960).

A. Okaya, Proc. IRE 48, 1921 (1960).

1959

G. Makhov, Bull. Am. Phys. Soc. 4, 21 (1959).

B. Bleaney, Proc. Phys. Soc. 73, 937 (1959).
[CrossRef]

N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
[CrossRef]

Bloembergen, Phys. Rev. Letters 2, 84 (1959).
[CrossRef]

F. R. Arams, S. Okwit, Proc. IRE 47, 992 (1959).

R. W. DeGrasse, E. O. Schulz-DuBois, H. E. D. Scovil, Bell System Tech. J. 38, 305 (1959).

J. Weber, Revs. Modern Phys. 31, 681 (1959).
[CrossRef]

1958

A. L. McWhorter, J. W. Meyer, Phys. Rev. 109, 312 (1958); R. M. Kingston, Lincoln Laboratory, M.I.T., Report M35-79; J. O. Artman, N. Bloembergen, S. Shapiro, Phys. Rev. 109, 1392 (1958); S. H. Autler, N. McAvoy, Phys. Rev. 110, 280 (1958).
[CrossRef]

1957

H. E. D. Scovil, G. Feher, H. Seidel, Phys. Rev. 105, 2, 762 (1957).
[CrossRef]

J. P. Wittke, Proc. IRE 45, 291 (1957).
[CrossRef]

J. Weber, Phys. Rev. 108, 537 (1957).
[CrossRef]

1956

N. Bloembergen, Phys. Rev. 104, 324 (1956).
[CrossRef]

1952

(a) F. W. de Vryer, C. J. Gorter, Physica 18, 549 (1952); (b) W. Mims, J. D. McGee (unpublished);(c) T. E. Geusic, Phys. Rev. 118, 129 (1960).
[CrossRef]

Arams, F. R.

F. R. Arams, Proc. IRE 47, 108 (1960).

F. R. Arams, S. Okwit, Proc. IRE 47, 992 (1959).

Artman, J. O.

N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
[CrossRef]

Bleaney, B.

B. Bleaney, Proc. Phys. Soc. 73, 937 (1959).
[CrossRef]

B. Bleaney, K. W. H. Stevens, Reports on Progress in Physics (Physical Society, London, 1953).

Bloembergen,

Bloembergen, Phys. Rev. Letters 2, 84 (1959).
[CrossRef]

Bloembergen, N.

N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
[CrossRef]

N. Bloembergen, Phys. Rev. 104, 324 (1956).
[CrossRef]

Bowers, K. D.

K. D. Bowers, J. Owen, Reports on Progress in Physics (Physical Society, London, 1955).

Carter, D. L.

D. L. Carter, J. Appl. Phys. (1961) (to be published).

de Vryer, F. W.

(a) F. W. de Vryer, C. J. Gorter, Physica 18, 549 (1952); (b) W. Mims, J. D. McGee (unpublished);(c) T. E. Geusic, Phys. Rev. 118, 129 (1960).
[CrossRef]

DeGrasse, R. W.

R. W. DeGrasse, E. O. Schulz-DuBois, H. E. D. Scovil, Bell System Tech. J. 38, 305 (1959).

Feher, G.

H. E. D. Scovil, G. Feher, H. Seidel, Phys. Rev. 105, 2, 762 (1957).
[CrossRef]

Foner, S.

S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).

Gerritsen, H. J.

E. S. Sabisky, H. J. Gerritsen, Proc. IRE 49, 1329 (1961).

H. J. Gerritsen, H. R. Lewis, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 385.

Gorter, C. J.

(a) F. W. de Vryer, C. J. Gorter, Physica 18, 549 (1952); (b) W. Mims, J. D. McGee (unpublished);(c) T. E. Geusic, Phys. Rev. 118, 129 (1960).
[CrossRef]

Keller, G. S.

S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).

Lewis, H. R.

H. J. Gerritsen, H. R. Lewis, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 385.

Maiman, T. H.

T. H. Maiman, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 330.

Makhov, G.

G. Makhov, Bull. Am. Phys. Soc. 4, 21 (1959).

McWhorter, A. L.

A. L. McWhorter, J. W. Meyer, Phys. Rev. 109, 312 (1958); R. M. Kingston, Lincoln Laboratory, M.I.T., Report M35-79; J. O. Artman, N. Bloembergen, S. Shapiro, Phys. Rev. 109, 1392 (1958); S. H. Autler, N. McAvoy, Phys. Rev. 110, 280 (1958).
[CrossRef]

Meyer, J. W.

A. L. McWhorter, J. W. Meyer, Phys. Rev. 109, 312 (1958); R. M. Kingston, Lincoln Laboratory, M.I.T., Report M35-79; J. O. Artman, N. Bloembergen, S. Shapiro, Phys. Rev. 109, 1392 (1958); S. H. Autler, N. McAvoy, Phys. Rev. 110, 280 (1958).
[CrossRef]

Minkowski, J. M.

J. M. Minkowski, Phys. Rev. 119, 1577 (1960).
[CrossRef]

Mono, L. R.

S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).

Okaya, A.

A. Okaya, Proc. IRE 48, 1921 (1960).

Okwit, S.

S. Okwit, J. G. Smith, Proc. IRE 49, 1210 (1961).

F. R. Arams, S. Okwit, Proc. IRE 47, 992 (1959).

Owen, J.

K. D. Bowers, J. Owen, Reports on Progress in Physics (Physical Society, London, 1955).

Pershan, P. S.

N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
[CrossRef]

Sabisky, E. S.

E. S. Sabisky, H. J. Gerritsen, Proc. IRE 49, 1329 (1961).

Schulz-DuBois, E. O.

R. W. DeGrasse, E. O. Schulz-DuBois, H. E. D. Scovil, Bell System Tech. J. 38, 305 (1959).

Scovil, H. E. D.

R. W. DeGrasse, E. O. Schulz-DuBois, H. E. D. Scovil, Bell System Tech. J. 38, 305 (1959).

H. E. D. Scovil, G. Feher, H. Seidel, Phys. Rev. 105, 2, 762 (1957).
[CrossRef]

Seidel, H.

H. E. D. Scovil, G. Feher, H. Seidel, Phys. Rev. 105, 2, 762 (1957).
[CrossRef]

Shapiro, S.

N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
[CrossRef]

Singer, J. R.

J. R. Singer, Masers (Wiley, New York, 1959).

Smith, J. G.

S. Okwit, J. G. Smith, Proc. IRE 49, 1210 (1961).

Stevens, K. W. H.

B. Bleaney, K. W. H. Stevens, Reports on Progress in Physics (Physical Society, London, 1953).

Thaster, J. B.

S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).

Troup, G.

G. Troup, Masers (Wiley, New York, 1959).

Vuylsteke, A. A.

A. A. Vuylsteke, Elements of Maser Theory (Van Nostrand, Princeton, New Jersey, 1960).

Weber, J.

J. Weber, Revs. Modern Phys. 31, 681 (1959).
[CrossRef]

J. Weber, Phys. Rev. 108, 537 (1957).
[CrossRef]

White, R. M.

S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).

Wittke, J. P.

J. P. Wittke, Proc. IRE 45, 291 (1957).
[CrossRef]

Bell System Tech. J.

R. W. DeGrasse, E. O. Schulz-DuBois, H. E. D. Scovil, Bell System Tech. J. 38, 305 (1959).

Bull. Am. Phys. Soc.

G. Makhov, Bull. Am. Phys. Soc. 4, 21 (1959).

Phys. Rev.

N. Bloembergen, S. Shapiro, P. S. Pershan, J. O. Artman, Phys. Rev. 114, 445 (1959).
[CrossRef]

J. Weber, Phys. Rev. 108, 537 (1957).
[CrossRef]

N. Bloembergen, Phys. Rev. 104, 324 (1956).
[CrossRef]

J. M. Minkowski, Phys. Rev. 119, 1577 (1960).
[CrossRef]

H. E. D. Scovil, G. Feher, H. Seidel, Phys. Rev. 105, 2, 762 (1957).
[CrossRef]

A. L. McWhorter, J. W. Meyer, Phys. Rev. 109, 312 (1958); R. M. Kingston, Lincoln Laboratory, M.I.T., Report M35-79; J. O. Artman, N. Bloembergen, S. Shapiro, Phys. Rev. 109, 1392 (1958); S. H. Autler, N. McAvoy, Phys. Rev. 110, 280 (1958).
[CrossRef]

Phys. Rev. Letters

Bloembergen, Phys. Rev. Letters 2, 84 (1959).
[CrossRef]

Physica

(a) F. W. de Vryer, C. J. Gorter, Physica 18, 549 (1952); (b) W. Mims, J. D. McGee (unpublished);(c) T. E. Geusic, Phys. Rev. 118, 129 (1960).
[CrossRef]

Proc. IRE

J. P. Wittke, Proc. IRE 45, 291 (1957).
[CrossRef]

A. Okaya, Proc. IRE 48, 1921 (1960).

F. R. Arams, Proc. IRE 47, 108 (1960).

E. S. Sabisky, H. J. Gerritsen, Proc. IRE 49, 1329 (1961).

S. Okwit, J. G. Smith, Proc. IRE 49, 1210 (1961).

F. R. Arams, S. Okwit, Proc. IRE 47, 992 (1959).

Proc. Phys. Soc.

B. Bleaney, Proc. Phys. Soc. 73, 937 (1959).
[CrossRef]

Revs. Modern Phys.

J. Weber, Revs. Modern Phys. 31, 681 (1959).
[CrossRef]

Other

G. Troup, Masers (Wiley, New York, 1959).

J. R. Singer, Masers (Wiley, New York, 1959).

A. A. Vuylsteke, Elements of Maser Theory (Van Nostrand, Princeton, New Jersey, 1960).

H. J. Gerritsen, H. R. Lewis, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 385.

S. Foner, L. R. Mono, J. B. Thaster, G. S. Keller, R. M. White, Second International Conference on Quantum Electronics, March 1961 (to be published).

T. H. Maiman, Quantum Electronics (Columbia Univ. Press, New York, 1960), p. 330.

B. Bleaney, K. W. H. Stevens, Reports on Progress in Physics (Physical Society, London, 1953).

K. D. Bowers, J. Owen, Reports on Progress in Physics (Physical Society, London, 1955).

D. L. Carter, J. Appl. Phys. (1961) (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Population, n(E i ), when no microwave power is applied follows Boltzmann statistics: n(E i ) = n(E1) exp[(E1E i )/kT]. (b) Population under the influence of large microwave power of frequency (E3E1)/h. n(E1) = n(E3) and amplification of frequency (E2E1)/h is now possible.

Fig. 2
Fig. 2

The fractional bandwidth at 20 db gain of some cavity masers.

Fig. 3
Fig. 3

Energy levels of chromium in two maser materials.

Fig. 4
Fig. 4

A traveling-wave maser with no external slowing structure.

Fig. 5
Fig. 5

(a) Push-pull scheme: E3E1 = E2E4. When E3E2 is made to coincide with the energy separation of another ion—the idler doping ion—which has a very short spin lattice relaxation time, amplification is possible at a frequency higher than the pump frequency. (b) Push-push scheme: E3E1 = E4E3. Now the idler doping is made to occur between levels 1 and 2 and again the signal frequency is higher than the pump frequency. (c) Harmonic pumping: No idler ion is necessary here. E2E1 = ½(E4E2). A process can take place in which two spins jump down from level 2 to 1 while simultaneously one spin jumps up from level 2 to level 4. Thus, n(E1) = n(E2) = n(E4).

Tables (1)

Tables Icon

Table 1 Properties of Maser Materials

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n ( E i ) = n ( E 1 ) exp [ ( E 1 E i ) / k T ]

Metrics