Abstract

Synthetic ruby, which is single crystal aluminum oxide doped with chromium oxide, is being extensively used in several solid state devices, including microwave masers, coherent light oscillators (optical masers or lasers), and a new phonon-type acoustical maser. This paper describes the physical properties of synthetic ruby which are pertinent to its use in solid state applications.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Combrisson Honig, C. H. Townes, Compt. Rend. Acad. Sci. 242, 2451 (1956).
  2. N. Bloembergen, Phys. Rev. 104, 325 (1956).
  3. J. E. Geusic, Phys. Rev. 102, 1252 (1956).
    [CrossRef]
  4. C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
    [CrossRef]
  5. H. E. D. Scovil, G. Ferber, H. Seidel, Phys. Rev. 105, 762 (1957).
    [CrossRef]
  6. C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).
  7. T. H. Maiman, J. Appl. Phys. 31, 222 (1960).
    [CrossRef]
  8. T. H. Maiman, Proceedings of NSIA-ARD Conference on Molecular Electronics, Washington, D.C., Nov.1958.
  9. S. Okwit, F. R. Arams, Smith, Proc. IRE2025 (Dec.1960).
  10. R. W. Terhune, I. E. King, Information Note 2, Project Michigan (1959).
  11. “Chromium-doped Titania as a maser material (including energy levels),” H. J. Gerritsen, S. E. Harrison, H. R. Lewis, J. Appl. Phys. 31, 9 (1960).
    [CrossRef]
  12. J. Weber, “Comprehensive maser summary,” Revs. Modern Phys. 31, 681–710 (1959).
    [CrossRef]
  13. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1956).
    [CrossRef]
  14. T. H. Maiman, Brit. Commun. & Electronics 7, 674 (1960);Nature 187, 493 (1960).
  15. T. H. Maiman, Phys. Rev. Letters (June1960).
  16. I. Wieder, Rev. Sci. Instr. 30, 11 (1959).
    [CrossRef]
  17. R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
    [CrossRef]
  18. A. L. Schawlow, Paper presented at OSA Meeting Pittsburgh, March 2, 1961, to be published; and recent communications.
  19. J. A. Mandarino, Am. Mineralogist 44, 961–73 (1959).

1960 (6)

T. H. Maiman, J. Appl. Phys. 31, 222 (1960).
[CrossRef]

S. Okwit, F. R. Arams, Smith, Proc. IRE2025 (Dec.1960).

“Chromium-doped Titania as a maser material (including energy levels),” H. J. Gerritsen, S. E. Harrison, H. R. Lewis, J. Appl. Phys. 31, 9 (1960).
[CrossRef]

T. H. Maiman, Brit. Commun. & Electronics 7, 674 (1960);Nature 187, 493 (1960).

T. H. Maiman, Phys. Rev. Letters (June1960).

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

1959 (4)

J. A. Mandarino, Am. Mineralogist 44, 961–73 (1959).

I. Wieder, Rev. Sci. Instr. 30, 11 (1959).
[CrossRef]

J. Weber, “Comprehensive maser summary,” Revs. Modern Phys. 31, 681–710 (1959).
[CrossRef]

C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
[CrossRef]

1958 (1)

C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).

1957 (1)

H. E. D. Scovil, G. Ferber, H. Seidel, Phys. Rev. 105, 762 (1957).
[CrossRef]

1956 (4)

Combrisson Honig, C. H. Townes, Compt. Rend. Acad. Sci. 242, 2451 (1956).

N. Bloembergen, Phys. Rev. 104, 325 (1956).

J. E. Geusic, Phys. Rev. 102, 1252 (1956).
[CrossRef]

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1956).
[CrossRef]

Alsop,

C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).

Arams, F. R.

S. Okwit, F. R. Arams, Smith, Proc. IRE2025 (Dec.1960).

Bloembergen, N.

N. Bloembergen, Phys. Rev. 104, 325 (1956).

Bond, W. L.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

Collins, R. J.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

Ferber, G.

H. E. D. Scovil, G. Ferber, H. Seidel, Phys. Rev. 105, 762 (1957).
[CrossRef]

Garrett, C. G. B.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

Gerritsen, H. J.

“Chromium-doped Titania as a maser material (including energy levels),” H. J. Gerritsen, S. E. Harrison, H. R. Lewis, J. Appl. Phys. 31, 9 (1960).
[CrossRef]

Geusic, J. E.

J. E. Geusic, Phys. Rev. 102, 1252 (1956).
[CrossRef]

Giordmoine,

C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).

Harrison, S. E.

“Chromium-doped Titania as a maser material (including energy levels),” H. J. Gerritsen, S. E. Harrison, H. R. Lewis, J. Appl. Phys. 31, 9 (1960).
[CrossRef]

Honig, Combrisson

Combrisson Honig, C. H. Townes, Compt. Rend. Acad. Sci. 242, 2451 (1956).

Kaiser,

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

Kikuchi, C.

C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
[CrossRef]

King, I. E.

R. W. Terhune, I. E. King, Information Note 2, Project Michigan (1959).

Lambe, J.

C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
[CrossRef]

Lewis, H. R.

“Chromium-doped Titania as a maser material (including energy levels),” H. J. Gerritsen, S. E. Harrison, H. R. Lewis, J. Appl. Phys. 31, 9 (1960).
[CrossRef]

Maiman, T. H.

T. H. Maiman, J. Appl. Phys. 31, 222 (1960).
[CrossRef]

T. H. Maiman, Brit. Commun. & Electronics 7, 674 (1960);Nature 187, 493 (1960).

T. H. Maiman, Phys. Rev. Letters (June1960).

T. H. Maiman, Proceedings of NSIA-ARD Conference on Molecular Electronics, Washington, D.C., Nov.1958.

Makhov, G.

C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
[CrossRef]

Mandarino, J. A.

J. A. Mandarino, Am. Mineralogist 44, 961–73 (1959).

Mayer,

C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).

Nelson, D. F.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

Okwit, S.

S. Okwit, F. R. Arams, Smith, Proc. IRE2025 (Dec.1960).

Schawlow, A. L.

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1956).
[CrossRef]

A. L. Schawlow, Paper presented at OSA Meeting Pittsburgh, March 2, 1961, to be published; and recent communications.

Scovil, H. E. D.

H. E. D. Scovil, G. Ferber, H. Seidel, Phys. Rev. 105, 762 (1957).
[CrossRef]

Seidel, H.

H. E. D. Scovil, G. Ferber, H. Seidel, Phys. Rev. 105, 762 (1957).
[CrossRef]

Smith,

S. Okwit, F. R. Arams, Smith, Proc. IRE2025 (Dec.1960).

Terhune, R. W.

C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
[CrossRef]

R. W. Terhune, I. E. King, Information Note 2, Project Michigan (1959).

Townes, C. H.

C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1956).
[CrossRef]

Combrisson Honig, C. H. Townes, Compt. Rend. Acad. Sci. 242, 2451 (1956).

Weber, J.

J. Weber, “Comprehensive maser summary,” Revs. Modern Phys. 31, 681–710 (1959).
[CrossRef]

Wieder, I.

I. Wieder, Rev. Sci. Instr. 30, 11 (1959).
[CrossRef]

Am. Mineralogist (1)

J. A. Mandarino, Am. Mineralogist 44, 961–73 (1959).

Astron. J. (1)

C. H. Townes, Alsop, Giordmoine, Mayer, Astron. J. 63, 301 (1958).

Brit. Commun. & Electronics (1)

T. H. Maiman, Brit. Commun. & Electronics 7, 674 (1960);Nature 187, 493 (1960).

Compt. Rend. Acad. Sci. (1)

Combrisson Honig, C. H. Townes, Compt. Rend. Acad. Sci. 242, 2451 (1956).

J. Appl. Phys. (3)

C. Kikuchi, J. Lambe, G. Makhov, R. W. Terhune, J. Appl. Phys. 30, 1061 (1959); Phys. Rev. 109, 4 (1958).
[CrossRef]

T. H. Maiman, J. Appl. Phys. 31, 222 (1960).
[CrossRef]

“Chromium-doped Titania as a maser material (including energy levels),” H. J. Gerritsen, S. E. Harrison, H. R. Lewis, J. Appl. Phys. 31, 9 (1960).
[CrossRef]

Phys. Rev. (4)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1956).
[CrossRef]

H. E. D. Scovil, G. Ferber, H. Seidel, Phys. Rev. 105, 762 (1957).
[CrossRef]

N. Bloembergen, Phys. Rev. 104, 325 (1956).

J. E. Geusic, Phys. Rev. 102, 1252 (1956).
[CrossRef]

Phys. Rev. Letters (2)

R. J. Collins, D. F. Nelson, A. L. Schawlow, W. L. Bond, C. G. B. Garrett, Kaiser, Phys. Rev. Letters 5, 7 (1960).
[CrossRef]

T. H. Maiman, Phys. Rev. Letters (June1960).

Proc. IRE (1)

S. Okwit, F. R. Arams, Smith, Proc. IRE2025 (Dec.1960).

Rev. Sci. Instr. (1)

I. Wieder, Rev. Sci. Instr. 30, 11 (1959).
[CrossRef]

Revs. Modern Phys. (1)

J. Weber, “Comprehensive maser summary,” Revs. Modern Phys. 31, 681–710 (1959).
[CrossRef]

Other (3)

A. L. Schawlow, Paper presented at OSA Meeting Pittsburgh, March 2, 1961, to be published; and recent communications.

R. W. Terhune, I. E. King, Information Note 2, Project Michigan (1959).

T. H. Maiman, Proceedings of NSIA-ARD Conference on Molecular Electronics, Washington, D.C., Nov.1958.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Various results of different Verneuil growth techniques, showing conventional boules lower right corner, a barrel boule upper right, spiral sapphire and ruby upper left, disc boule lower left, rutile boule in center, and a fabricated optical maser rod 5 mm in diameter by 50 mm long in front center.

Fig. 2
Fig. 2

Airborne Instruments tunable cavity ruby maser.

Fig. 3
Fig. 3

Bell Telephone Laboratory traveling wave ruby maser.

Fig. 4
Fig. 4

Ruby unit cell (A) and energy level diagram (B) for optical maser.

Fig. 5
Fig. 5

Bell Telephone Laboratory pulsed ruby optical maser.

Fig. 6
Fig. 6

Refractive indices of synthetic ruby.

Fig. 7
Fig. 7

Absorption of ruby.

Fig. 8
Fig. 8

Retention of pre-coprecipitated starting doping during Verneuil growth of ruby.

Fig. 9
Fig. 9

Thermal conductivity of sapphire and ruby.

Fig. 10
Fig. 10

Most recently developed low strain solid ruby for optical maser.

Fig. 11
Fig. 11

Ruby composite crystal with sapphire overlay.

Metrics