Abstract

In the optical masers realized so far a Perot-Fabry device is used as a multimode cavity. It may be interesting to investigate the general properties of such a device when the emitting or the absorbing atoms are put inside the reflecting mirrors. Even in the case when this device works below the threshold of maser action it shows remarkable properties which are worthwhile studying experimentally. The following aspects are considered in the paper: In the case of external illumination, the distribution of light intensity inside a Perot-Fabry interferometer is calculated. It is shown that the local light intensity in the stationary waves inside can be much higher than the intensity of the incident light beam. The properties of light emitted by atoms inside the Perot-Fabry and emerging from it are investigated. Narrow fringes of very strong intensity can be obtained. If the emitting atoms are located in an atomic beam the central fringe has natural line width, the Doppler broadening being suppressed. The realization of a fluorescent medium of lamellar structure is discussed. This structure favors one special mode of emission fringes. Finally, the absorption of atoms inside the interferometer is studied. It is shown that this device is equivalent to a long absorption path in an ordinary light beam.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
    [CrossRef]
  2. G. Bruhat, Cours d’Optique (Masson, Paris, 1959), Chap. VIII.
  3. M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. VII, 6; F. A. Jenkins, H. A. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), II, 14, p. 261.
  4. G. Bruhat, Cours d’Optique (Masson, Paris, 1959).
  5. K. W. Meissner, V. Kaufman, J. Opt. Soc. Am. 49, 942 (1959).
    [CrossRef]

1959

1958

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. VII, 6; F. A. Jenkins, H. A. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), II, 14, p. 261.

Bruhat, G.

G. Bruhat, Cours d’Optique (Masson, Paris, 1959).

G. Bruhat, Cours d’Optique (Masson, Paris, 1959), Chap. VIII.

Kaufman, V.

Meissner, K. W.

Schawlow, A. L.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. VII, 6; F. A. Jenkins, H. A. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), II, 14, p. 261.

J. Opt. Soc. Am.

Phys. Rev.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Other

G. Bruhat, Cours d’Optique (Masson, Paris, 1959), Chap. VIII.

M. Born, E. Wolf, Principles of Optics (Pergamon Press, London, 1959), Chap. VII, 6; F. A. Jenkins, H. A. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), II, 14, p. 261.

G. Bruhat, Cours d’Optique (Masson, Paris, 1959).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

φ = ( 2 π / λ ) 2 n e cos i
I = I 0 A y ( i ) I 0 = ( t 2 1 r 2 ) 2 = T 2 ( 1 R ) 2 A y ( i ) = 1 1 + m sin 2 φ / 2 m = 4 R ( 1 R ) 2 .
f = δ φ Δ φ = 2 π m = 1 R π R = 1 r 2 π r .
a = t 1 r 2 [ A y ( i ) ] 1 / 2 .
b = t r 1 r 2 [ A y ( i ) ] 1 / 2 .
ψ = 2 π λ · 2 n z cos i + C t e .
I = ( a b ) 2 + 4 a b cos 2 ψ 2 I = I min + I max cos 2 ψ 2 I max = 4 a b = 4 t 2 r ( 1 r 2 ) 2 A y ( i ) = 4 T R ( 1 R ) 2 A y ( i ) = 4 R 1 R A y ( i ) I min = ( a b ) 2 = [ t ( 1 r ) 1 r 2 ] 2 A y ( i ) = ( t 1 + r ) 2 A y ( i ) = 1 r 1 + r A y ( i ) .
I min I max = ( 1 r ) 2 4 r .
I = I max cos 2 ψ 2 = 4 R 1 R · 1 1 + m sin 2 φ / 2 · cos 2 ψ 2 .
I = I max cos 2 ( π λ · 2 n z cos i ) .
I 1 = 4 R 1 R = 40.97 0.06 64.
I 1 ¯ = 4 R 1 R cos 2 ψ 2 ¯ = 2 R 1 R 32.
A y min = 1 1 + m = ( 1 R 1 + R ) 2
e Δ z = 2 n e cos i λ = k .
a cos ω ( t x sin i z cos i c / n ) b cos ω ( t x sin i + z cos i c / n ) c , vitesse de la lumière dans le vide . ω = 2 π c / λ , pulsation .
A = 2 a b cos 2 π n z cos i λ cos ω ( t x sin i c / n ) .
Φ = ω x sin i c / n = 2 π λ · n x sin i .
a = N d υ t 1 r 2 [ A y ( t ) ] 1 / 2 b = N d υ t r 1 r 2 [ A y ( i ) ] 1 / 2 .
ψ = 2 π λ · 2 n z cos i + C t e .
d I = [ ( a b ) 2 + 4 a b cos 2 ψ 2 ] N d υ
d I N d υ . 4 a b cos 2 ψ 2 = 4 N d υ t 2 r ( 1 r 2 ) 2 A y ( i ) cos 2 ψ 2 = 4 R 1 R A y ( i ) . N cos 2 ψ 2 d υ .
B S = 4 R 1 R A y ( i ) υ N ( x , y , z ) cos 2 ( 2 π λ . n z cos i ) d x d y d z .
B = 4 R 1 R A y ( i ) N 0 e cos 2 ( 2 π λ n z cos i ) d z .
0 e cos 2 ( 2 π λ n z cos i ) d z = e . cos 2 ψ 2 ¯ = e 2 B ( i ) = 2 R 1 R . N e . 1 1 + m sin 2 φ / 2 .
B 0 S = υ N d υ = N S e .
B ( i ) B 0 = 2 R 1 R . 1 1 + m sin 2 φ / 2 .
2 R 1 R B 0 = 32 B 0 .
B ¯ = B ( i ) d ω Δ ω
B ¯ = B ( i ) d ( φ / 2 ) Δ ( φ / 2 ) .
B = π / 2 + π / 2 b ( i ) d ( ψ / 2 ) π = 2 R 1 R B 0 π π / 2 + π / 2 d ( φ / 2 ) 1 + m sin 2 φ / 2 π / 2 + π / 2 d x 1 + m sin 2 x = π m + 1 = π 1 R 1 + R B ¯ = B 0 . 2 R 1 + R B 0 .
cos 2 ψ 2 d z est égale à co s 2 ψ 2 ¯ · ɛ = ɛ 2 .
N ( z ) = N 0 cos 2 β z .
B = C t e 0 e cos 2 β z cos 2 ψ 2 d z . Posons ψ 2 = 2 π λ 2 n z cos i = α z . B = C t e 0 e cos 2 α z cos 2 β z d z .
n cos i λ = n λ .
cos 2 β z = cos 2 2 π λ n e cos i
n cos i λ = n cos i λ .
a = a e k / 2 e = a ( 1 k / 2 e ) .
I = t 4 ( 1 r 2 ) 2 . 1 1 + m sin 2 φ / 2 .
I 0 = t 4 ( 1 r 2 ) 2 = t 4 ρ 4 ( 1 r 2 ρ 2 ) 2 .
I 0 = t 4 ( 1 r 2 ) 2 ( 1 4 ɛ 1 r 2 ) = 1 4 ɛ 1 R = 1 2 k e 1 R

Metrics