Abstract

A new optical maser structure is described which reduces the threshold pumping power and increases the available output. It consists of a composite rod, which has a core of maser material (e.g., ruby) covered by a coaxial sheath of transparent refractive material (e.g., sapphire). Refraction of pumping light by the sheath is shown to increase the intensity at the active core. The structure also facilitates cooling by providing an increased surface area.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
    [CrossRef]
  2. A. L. Schawlow, in Quantum Electronics (C. H. Townes, editor, Columbia University Press, New York, 1960).
  3. A. L. Schawlow, Solid State J. 2, No. 6, 21 (June1, 1961).
  4. T. H. Maiman, Nature 187, 493 (1960); Brit. Commun. & Electronics 7, 674 (1960).
    [CrossRef]
  5. I. Wieder, L. R. Sarles, Phys. Rev. Letters 6, 9 (1961).
    [CrossRef]
  6. A. L. Schawlow, G. E. Devlin, Phys. Rev. Letters 6, 96 (1961).
    [CrossRef]
  7. R. Berman, Proc. Roy. Soc. A208, 90 (1951).
  8. A. L. Schawlow in Quantum Electronics (J. R. Singer, editor, Columbia University Press, New York, 1961), Vol. II.
  9. A. Sommerfeld, Optics (Academic Press, New York, 1954), pp. 13–18.
  10. C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

1961 (4)

A. L. Schawlow, Solid State J. 2, No. 6, 21 (June1, 1961).

I. Wieder, L. R. Sarles, Phys. Rev. Letters 6, 9 (1961).
[CrossRef]

A. L. Schawlow, G. E. Devlin, Phys. Rev. Letters 6, 96 (1961).
[CrossRef]

C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

1960 (1)

T. H. Maiman, Nature 187, 493 (1960); Brit. Commun. & Electronics 7, 674 (1960).
[CrossRef]

1958 (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

1951 (1)

R. Berman, Proc. Roy. Soc. A208, 90 (1951).

Berman, R.

R. Berman, Proc. Roy. Soc. A208, 90 (1951).

Ciftan, M.

C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

Devlin, G. E.

A. L. Schawlow, G. E. Devlin, Phys. Rev. Letters 6, 96 (1961).
[CrossRef]

Luck, C. F.

C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

Maiman, T. H.

T. H. Maiman, Nature 187, 493 (1960); Brit. Commun. & Electronics 7, 674 (1960).
[CrossRef]

Sarles, L. R.

I. Wieder, L. R. Sarles, Phys. Rev. Letters 6, 9 (1961).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow, G. E. Devlin, Phys. Rev. Letters 6, 96 (1961).
[CrossRef]

A. L. Schawlow, Solid State J. 2, No. 6, 21 (June1, 1961).

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

A. L. Schawlow, in Quantum Electronics (C. H. Townes, editor, Columbia University Press, New York, 1960).

A. L. Schawlow in Quantum Electronics (J. R. Singer, editor, Columbia University Press, New York, 1961), Vol. II.

Shafer, C. G.

C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

Sommerfeld, A.

A. Sommerfeld, Optics (Academic Press, New York, 1954), pp. 13–18.

Statz, H.

C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

Townes, C. H.

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Wieder, I.

I. Wieder, L. R. Sarles, Phys. Rev. Letters 6, 9 (1961).
[CrossRef]

Nature (1)

T. H. Maiman, Nature 187, 493 (1960); Brit. Commun. & Electronics 7, 674 (1960).
[CrossRef]

Phys. Rev. (1)

A. L. Schawlow, C. H. Townes, Phys. Rev. 112, 1940 (1958).
[CrossRef]

Phys. Rev. Letters (2)

I. Wieder, L. R. Sarles, Phys. Rev. Letters 6, 9 (1961).
[CrossRef]

A. L. Schawlow, G. E. Devlin, Phys. Rev. Letters 6, 96 (1961).
[CrossRef]

Proc. I.R.E. (1)

C. G. Shafer, M. Ciftan, C. F. Luck, H. Statz, Proc. I.R.E. 49, 960 (1961).

Proc. Roy. Soc. (1)

R. Berman, Proc. Roy. Soc. A208, 90 (1951).

Solid State J. (1)

A. L. Schawlow, Solid State J. 2, No. 6, 21 (June1, 1961).

Other (3)

A. L. Schawlow, in Quantum Electronics (C. H. Townes, editor, Columbia University Press, New York, 1960).

A. L. Schawlow in Quantum Electronics (J. R. Singer, editor, Columbia University Press, New York, 1961), Vol. II.

A. Sommerfeld, Optics (Academic Press, New York, 1954), pp. 13–18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rays of light incident on the side wall of a dielectric cylinder are refracted toward the axis.

Fig. 2
Fig. 2

Composite rod structure. The core section is doped, as for ruby, while the outer sheath is clear (e.g., sapphire).

Fig. 3
Fig. 3

Path of rays inside a dielectric cylinder.

Fig. 4
Fig. 4

Energy density of light, as a function of radius, inside a dielectric cylinder illuminated by rays from all directions in a plane perpendicular to the cylinder axis.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

8 π 2 ( π ln 2 ) 1 2 1 φ t · V λ 3 · Δ ν ν
u 0 = 0 2 π 1 2 0 E 0 2 d α = 2 π . 1 2 0 E 0 2 .
n sin β = sin α .
n t 2 d A cos β S 0 ,
S 0 = 1 2 0 μ 0 E 0 2 ,
t = 2 cos α cos α + n cos β .
r = n cos β cos α n cos β + cos α .
l = R 1 2 R 0 2 sin 2 β .
s = ρ 2 R 0 2 sin 2 β .
d s = ρ d ρ s .
d P = ( n t 2 d A cos β S 0 ) ( 2 η ρ d ρ s ) ( e 2 η ( l + s ) + e 2 η ( l s ) ) · p = 0 ( r 2 e 4 η l ) p .
p = 0 ( r 2 e 4 η l ) p = 1 1 r 2 e 4 η l .
P = ( ν R 0 n S 0 ) ( 2 η ρ d ρ ) · t 2 cos β ( e 2 η ( l + s ) + e 2 η ( l s ) ) d α ( 1 r 2 e 4 η l ) s ,
sin α 0 = min { 1 , n ρ R 0 } .
d u d t = 2 π P ν 2 π ρ d ρ ,
d u d t = d u d x d x d t = c n d u d x = 2 η c n u ,
u = n P 2 c η ν ρ d ρ .
1 c S 0 = 1 2 0 E 0 2 = 1 2 π u 0 ,
u u 0 = 4 n 2 R 0 π · 0 α 0 cos 2 α cos β cosh 2 η s d α s [ ( cos 2 α + n 2 cos 2 β ) sinh 2 η l + 2 n cos α cos β cosh 2 η l ]
u u 0 = 2 n R 0 π 0 α 0 cos α d α ρ 2 ( R 0 / n ) 2 sin 2 α = { n 2 , 0 ρ R 0 / n ( 2 n 2 / π ) sin 1 ( R 0 / n ρ ) , R 0 / n ρ R 0 .

Metrics