Abstract

The use of the human iris as a biometric has recently attracted significant interest in the area of security applications. The need to capture an iris without active user cooperation places demands on the optical system. Unlike a traditional optical design, in which a large imaging volume is traded off for diminished imaging resolution and capacity for collecting light, Wavefront Coded imaging is a computational imaging technology capable of expanding the imaging volume while maintaining an accurate and robust iris identification capability. We apply Wavefront Coded imaging to extend the imaging volume of the iris recognition application.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993).
    [CrossRef]
  2. S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).
  3. J. N. Mait, R. Athale, J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Exp.11, 2093–2101 (2003); http://www.opticsexpress.org .
    [CrossRef]
  4. R. Narayanswamy, A. E. Baron, V. Chumachenco, A. Greengard, “Applications of wavefront coded imaging,” in Computational Imaging II, C. A. Bouman, E. L. Miller, eds., Proc. SPIE5299, 163–174 (2004).
    [CrossRef]
  5. S. Bradburn, E. R. Dowski, W. Thomas Cathey, “Realizations of focus invariance in optical–digital systems with wave-front coding,” Appl. Opt. 36, 9157–9166 (1997).
    [CrossRef]
  6. J. van der Gracht, E. R. Dowski, W. T. Cathey, J. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical System Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
    [CrossRef]
  7. E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
    [CrossRef] [PubMed]
  8. S. C. Tucker, E. R. Dowski, W. T. Cathey, “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Exp.4, 467–474 (1999); http://www.opticsexpress.org .
    [CrossRef]
  9. A. E. Baron, V. V. Chumachenko, “An alternative approach to optical imaging,” IVD Technol. 8, 47–51 (2002).
  10. W. Cathey, E. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002).
    [CrossRef] [PubMed]
  11. E. R. Dowski, R. H. Cormack, S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” in Visual Information Processing IX, S. K. Park, Z.-U. Rahman, eds., Proc. SPIE4041, 114–120 (2000).
    [CrossRef]
  12. H. B. Wach, E. R. Dowski, W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998).
    [CrossRef]
  13. E. R. Dowski, S. C. Bradburn, W. T. Cathey, “Aberration invariant optical/digital incoherent systems,” Jpn. Opt. Rev. 3, 492–432 (1996).
  14. E. R. Dowski, A. R. FitzGerrell, W. T. Cathey, “Optical/digital aberration control in incoherent optical systems,” in Second Iberoamerican Meeting on Optics, D. Malacara-Hernandez, S. E. Acosta-Ortiz, R. Rodriguez-Vera, eds., Proc. SPIE2730, 120–126 (1995).
  15. C. Tisse, L. Martin, L. Torres, M. Robert, “Person identification technique using human iris recognition,” Proceedings of the 15th International Conference on Vision Interface (n.p., 2002), pp. 27–29.
  16. C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
    [CrossRef]
  17. K. Kubala, E. Dowski, W. Cathey, “Reducing complexity in computational imaging systems,” Opt. Exp.11, 2102–2108 (2003); http://www.opticsexpress.org .
    [CrossRef]
  18. F. O. Huck, C. L. Fales, N. Halyo, K. Stacy, “Image gathering and processing: information and fidelity,” J. Opt. Soc. Am. A 2, 1644–1666 (1985).
    [CrossRef] [PubMed]

2003

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

2002

A. E. Baron, V. V. Chumachenko, “An alternative approach to optical imaging,” IVD Technol. 8, 47–51 (2002).

W. Cathey, E. Dowski, “New paradigm for imaging systems,” Appl. Opt. 41, 6080–6092 (2002).
[CrossRef] [PubMed]

2000

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

1998

1997

1996

E. R. Dowski, S. C. Bradburn, W. T. Cathey, “Aberration invariant optical/digital incoherent systems,” Jpn. Opt. Rev. 3, 492–432 (1996).

1995

1993

J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993).
[CrossRef]

1985

Baron, A. E.

A. E. Baron, V. V. Chumachenko, “An alternative approach to optical imaging,” IVD Technol. 8, 47–51 (2002).

R. Narayanswamy, A. E. Baron, V. Chumachenco, A. Greengard, “Applications of wavefront coded imaging,” in Computational Imaging II, C. A. Bouman, E. L. Miller, eds., Proc. SPIE5299, 163–174 (2004).
[CrossRef]

Bowen, J.

J. van der Gracht, E. R. Dowski, W. T. Cathey, J. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical System Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

Bradburn, S.

Bradburn, S. C.

E. R. Dowski, S. C. Bradburn, W. T. Cathey, “Aberration invariant optical/digital incoherent systems,” Jpn. Opt. Rev. 3, 492–432 (1996).

Cain, C. P.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Cathey, W.

Cathey, W. T.

H. B. Wach, E. R. Dowski, W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998).
[CrossRef]

E. R. Dowski, S. C. Bradburn, W. T. Cathey, “Aberration invariant optical/digital incoherent systems,” Jpn. Opt. Rev. 3, 492–432 (1996).

E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[CrossRef] [PubMed]

E. R. Dowski, A. R. FitzGerrell, W. T. Cathey, “Optical/digital aberration control in incoherent optical systems,” in Second Iberoamerican Meeting on Optics, D. Malacara-Hernandez, S. E. Acosta-Ortiz, R. Rodriguez-Vera, eds., Proc. SPIE2730, 120–126 (1995).

J. van der Gracht, E. R. Dowski, W. T. Cathey, J. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical System Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

Chumachenco, V.

R. Narayanswamy, A. E. Baron, V. Chumachenco, A. Greengard, “Applications of wavefront coded imaging,” in Computational Imaging II, C. A. Bouman, E. L. Miller, eds., Proc. SPIE5299, 163–174 (2004).
[CrossRef]

Chumachenko, V. V.

A. E. Baron, V. V. Chumachenko, “An alternative approach to optical imaging,” IVD Technol. 8, 47–51 (2002).

Cormack, R. H.

E. R. Dowski, R. H. Cormack, S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” in Visual Information Processing IX, S. K. Park, Z.-U. Rahman, eds., Proc. SPIE4041, 114–120 (2000).
[CrossRef]

Courant, D.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Daugman, J. G.

J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993).
[CrossRef]

Dowski, E.

Dowski, E. R.

H. B. Wach, E. R. Dowski, W. T. Cathey, “Control of chromatic focal shift through wave-front coding,” Appl. Opt. 37, 5359–5367 (1998).
[CrossRef]

S. Bradburn, E. R. Dowski, W. Thomas Cathey, “Realizations of focus invariance in optical–digital systems with wave-front coding,” Appl. Opt. 36, 9157–9166 (1997).
[CrossRef]

E. R. Dowski, S. C. Bradburn, W. T. Cathey, “Aberration invariant optical/digital incoherent systems,” Jpn. Opt. Rev. 3, 492–432 (1996).

E. R. Dowski, W. T. Cathey, “Extended depth of field through wave-front coding,” Appl. Opt. 34, 1859–1866 (1995).
[CrossRef] [PubMed]

E. R. Dowski, R. H. Cormack, S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” in Visual Information Processing IX, S. K. Park, Z.-U. Rahman, eds., Proc. SPIE4041, 114–120 (2000).
[CrossRef]

J. van der Gracht, E. R. Dowski, W. T. Cathey, J. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical System Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

E. R. Dowski, A. R. FitzGerrell, W. T. Cathey, “Optical/digital aberration control in incoherent optical systems,” in Second Iberoamerican Meeting on Optics, D. Malacara-Hernandez, S. E. Acosta-Ortiz, R. Rodriguez-Vera, eds., Proc. SPIE2730, 120–126 (1995).

Fales, C. L.

FitzGerrell, A. R.

E. R. Dowski, A. R. FitzGerrell, W. T. Cathey, “Optical/digital aberration control in incoherent optical systems,” in Second Iberoamerican Meeting on Optics, D. Malacara-Hernandez, S. E. Acosta-Ortiz, R. Rodriguez-Vera, eds., Proc. SPIE2730, 120–126 (1995).

Freund, D. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Greengard, A.

R. Narayanswamy, A. E. Baron, V. Chumachenco, A. Greengard, “Applications of wavefront coded imaging,” in Computational Imaging II, C. A. Bouman, E. L. Miller, eds., Proc. SPIE5299, 163–174 (2004).
[CrossRef]

Grossman, B. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Halyo, N.

Huck, F. O.

Kennedy, P. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Lund, D. J.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Mainster, M. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Manenkov, A. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Marshall, W. J.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Martin, L.

C. Tisse, L. Martin, L. Torres, M. Robert, “Person identification technique using human iris recognition,” Proceedings of the 15th International Conference on Vision Interface (n.p., 2002), pp. 27–29.

McCally, R.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Narayanswamy, R.

R. Narayanswamy, A. E. Baron, V. Chumachenco, A. Greengard, “Applications of wavefront coded imaging,” in Computational Imaging II, C. A. Bouman, E. L. Miller, eds., Proc. SPIE5299, 163–174 (2004).
[CrossRef]

Pauca, V. P.

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

Plemmons, R. J.

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

Prasad, S.

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

Robert, M.

C. Tisse, L. Martin, L. Torres, M. Robert, “Person identification technique using human iris recognition,” Proceedings of the 15th International Conference on Vision Interface (n.p., 2002), pp. 27–29.

Rockwell, B. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Sarama, S. D.

E. R. Dowski, R. H. Cormack, S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” in Visual Information Processing IX, S. K. Park, Z.-U. Rahman, eds., Proc. SPIE4041, 114–120 (2000).
[CrossRef]

Sliney, D. H.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Smith, P. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Stacy, K.

Stuck, B. E.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Tell, S. A.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Thomas Cathey, W.

Tisse, C.

C. Tisse, L. Martin, L. Torres, M. Robert, “Person identification technique using human iris recognition,” Proceedings of the 15th International Conference on Vision Interface (n.p., 2002), pp. 27–29.

Torgersen, T.

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

Torres, L.

C. Tisse, L. Martin, L. Torres, M. Robert, “Person identification technique using human iris recognition,” Proceedings of the 15th International Conference on Vision Interface (n.p., 2002), pp. 27–29.

van der Gracht, J.

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

J. van der Gracht, E. R. Dowski, W. T. Cathey, J. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical System Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

Wach, H. B.

Wolbarsht, M. L.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Zheltov, G. I.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

Appl. Opt.

Health Phys.

C. P. Cain, D. Courant, D. A. Freund, B. A. Grossman, P. A. Kennedy, D. J. Lund, M. A. Mainster, A. A. Manenkov, W. J. Marshall, R. McCally, B. A. Rockwell, D. H. Sliney, P. A. Smith, B. E. Stuck, S. A. Tell, M. L. Wolbarsht, G. I. Zheltov, “Revision of the guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm,” Health Phys. 79, 431–440 (2000).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

J. G. Daugman, “High confidence visual recognition of persons by a test of statistical independence,” IEEE Trans. Pattern Anal. Mach. Intell. 15, 1148–1161 (1993).
[CrossRef]

IVD Technol.

A. E. Baron, V. V. Chumachenko, “An alternative approach to optical imaging,” IVD Technol. 8, 47–51 (2002).

J. Opt. Soc. Am. A

Jpn. Opt. Rev.

E. R. Dowski, S. C. Bradburn, W. T. Cathey, “Aberration invariant optical/digital incoherent systems,” Jpn. Opt. Rev. 3, 492–432 (1996).

Opt. Inf. Syst.

S. Prasad, T. Torgersen, V. P. Pauca, R. J. Plemmons, J. van der Gracht, “Restoring images with space variant blur via pupil phase engineering,” special issue on computer imaging, Opt. Inf. Syst. 4, 4–5 (2003).

Other

J. N. Mait, R. Athale, J. van der Gracht, “Evolutionary paths in imaging and recent trends,” Opt. Exp.11, 2093–2101 (2003); http://www.opticsexpress.org .
[CrossRef]

R. Narayanswamy, A. E. Baron, V. Chumachenco, A. Greengard, “Applications of wavefront coded imaging,” in Computational Imaging II, C. A. Bouman, E. L. Miller, eds., Proc. SPIE5299, 163–174 (2004).
[CrossRef]

J. van der Gracht, E. R. Dowski, W. T. Cathey, J. Bowen, “Aspheric optical elements for extended depth of field imaging,” in Novel Optical System Design and Optimization, J. M. Sasian, ed., Proc. SPIE2537, 279–288 (1995).
[CrossRef]

S. C. Tucker, E. R. Dowski, W. T. Cathey, “Extended depth of field and aberration control for inexpensive digital microscope systems,” Opt. Exp.4, 467–474 (1999); http://www.opticsexpress.org .
[CrossRef]

E. R. Dowski, A. R. FitzGerrell, W. T. Cathey, “Optical/digital aberration control in incoherent optical systems,” in Second Iberoamerican Meeting on Optics, D. Malacara-Hernandez, S. E. Acosta-Ortiz, R. Rodriguez-Vera, eds., Proc. SPIE2730, 120–126 (1995).

C. Tisse, L. Martin, L. Torres, M. Robert, “Person identification technique using human iris recognition,” Proceedings of the 15th International Conference on Vision Interface (n.p., 2002), pp. 27–29.

K. Kubala, E. Dowski, W. Cathey, “Reducing complexity in computational imaging systems,” Opt. Exp.11, 2102–2108 (2003); http://www.opticsexpress.org .
[CrossRef]

E. R. Dowski, R. H. Cormack, S. D. Sarama, “Wavefront coding: jointly optimized optical and digital imaging systems,” in Visual Information Processing IX, S. K. Park, Z.-U. Rahman, eds., Proc. SPIE4041, 114–120 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Iris recognition system for computer security. An ideal iris recognition system captures and recognizes the iris accurately over a large imaging volume and requires no active cooperation from the user.

Fig. 2
Fig. 2

Architecture of a computational imaging system consisting of application-specific optics and complementary signal processing. The optics and signal processing are jointly optimized for a particular imaging application.

Fig. 3
Fig. 3

Comparison between the modulation transfer function of (a) a traditional optical system and (b) a Wavefront Coded optical system. Notice that the traditional system has multiple nulls in the MTF, whereas the Wavefront Coded system maintains the system almost invariant with defocus. The same amount of defocus is applied in both cases.

Fig. 4
Fig. 4

Iris texture as a biometric. The rich texture of the iris differs significantly even between the left and the right eyes of the same person. This texture is encoded as a 2048-bit vector that forms the basis of the biometric.

Fig. 5
Fig. 5

Building blocks of the iris recognition algorithm. Wavefront Coding provides us with a processed image, which is segmented to separate the relevant parts of the iris. The iris code is computed from the segmented image and is compared with the database of iris codes, providing us with an iris score. A decision threshold step accepts or rejects the detected iris.

Fig. 6
Fig. 6

Segmenting the iris texture in the image requires locating the eye in the image and precisely determining the pupil and iris boundaries. A slight error in localization can lead to dramatic performance degradation.

Fig. 7
Fig. 7

Remapping the iris texture from an annular shape into a rectangular form.

Fig. 8
Fig. 8

Iris texture after filtering at three different passbands, after Hilbert transformation, and after thresholding. These filtered textures are used to derive the instantaneous frequency and emergent phase, which lead to the final iris score.

Fig. 9
Fig. 9

Schematic diagram depicting the experimental setup used for automatically capturing iris images over a range of object distances. The lens can easily be changed, allowing us to use the same setup for characterizing traditional and Wavefront Coded optical systems.

Fig. 10
Fig. 10

Comparison between off-the-shelf Wavefront Coded imaging and traditional imaging. The value +2.5 in. indicates the object distance from the best-focus position toward the camera, and −2.5 in. indicates the object distance from the best-focus position away from the camera. Notice that the eyelashes are clearly resolved in the Wavefront Coded images, whereas they are lost in traditional imaging when the image is defocused.

Fig. 11
Fig. 11

Detailed view and comparison between the off-the-shelf Wavefront Coded images and the traditional images. Notice that the iris texture and eyelashes are well resolved in the Wavefront Coded images, whereas the traditional images lose these details except in the best-focus image.

Fig. 12
Fig. 12

Experimentally determined iris score of a traditional imaging system (non–Wavefront Coded system). The left eye has been enrolled into the database. The dotted curve shows the decision threshold used to discriminate valid score from invalid scores. The depth of field of the traditional system operating at F/3.5 is approximately 3 in.

Fig. 13
Fig. 13

Experimentally determined iris scores for an off-the-shelf Wavefront Coded system. These results are obtained by retrofitting a commercially available CCTV lens with an off-the-shelf Wavefront Coded element. Notice that the depth of focus has been increased to 6 in., which doubles the depth of focus of a traditional system.

Fig. 14
Fig. 14

MTF of the traditional CCTV system as it moves through focus. The numeric labels indicate the object distances (in inches; 1 in. = 2.54 cm) from the lens. Notice the MTF for the 22-in. best-focus position and compare it with the MTF at the other object distances. The MTF rapidly goes to zero for higher frequencies with increasing defocus.

Fig. 15
Fig. 15

Aspheric optical surface designed for iris recognition with a particular lens. The surface is approximately 40 μm from peak to valley. Adding this optical element to the 50-mm CCTV lens is expected to deliver a depth of field of 10 in., for an object distance ranging from 18 to 28 in.

Fig. 16
Fig. 16

MTFs of the Wavefront Coded system as a function of object distance (before processing). The numeric labels indicate the object distances in inches (1 in. = 2.54 cm). Notice that the MTFs do not have any zeros in the passband in contrast to the MTFs shown in Fig. 14 of the traditional imaging system. Absence of zeros in the MTF indicates that the information is retained in the Wavefront Coded image and can be extracted with suitable postprocessing.

Fig. 17
Fig. 17

Schematic representation of the selection process of decoding filter. The size of the iris is used to estimate the distance D to the object. One of three filters is selected, depending on the value of D. The processed image is obtained by filtering the raw image with the selected decoding filter.

Fig. 18
Fig. 18

MTFs of the custom Wavefront Coded system after processing compared with those of a traditional system (same optical system without Wavefront Coding) and of a diffraction-limited system at best focus. The processed system MTFs are parallel to the traditional best-focus MTF. The thick curve indicates the average processed response. The multiple curves around the average MTF represent processed MTFs at different object distances, spanning the range 18–28 in.

Fig. 19
Fig. 19

Phase of the traditional OTF as the system moves through the entire imaging volume of 18 to 28 in. Notice that the phase variations are significant even within the lower frequencies, and they are not simply linear, which would result in only a spatial shift.

Fig. 20
Fig. 20

One-dimensional phase of the Wavefront Coded optical system after processing, showing near-zero error in the region of spatial frequencies of interest. Maintaining a well-bounded phase difference at the lower frequencies is a requirement for correctly processing the zebra-stripe pattern in the iris texture.

Fig. 21
Fig. 21

Expected performance of the iris recognition system with the newly designed Wavefront Coded element fitted to the 50-mm CCTV lens. Note that the system is capable of recognizing the enrolled left eye over the entire distance, while rejecting the right eye. The depth of focus of this system is 10 in., which satisfactorily meets the specification of this application.

Tables (2)

Tables Icon

Table 1 Characteristics of an Ideal Imaging System for Iris Recognition

Tables Icon

Table 2 Main Criteria for the Design of the Wavefront Coded Element and the Decoding Filters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

max ( r , x 0 , y 0 ) | r r , x 0 , y 0 I ( x , y ) 2 π r d s | .

Metrics