Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Angular-interrogation attenuated total reflection metrology system for plasmonic sensors

Not Accessible

Your library or personal account may give you access

Abstract

We develop an angular-interrogation attenuated total reflection (ATR) metrology system for three different plasmonic sensors, namely, a conventional surface plasmon resonance (SPR) device, a coupled-waveguide SPR device, and a nanoparticle-enhanced SPR device. The proposed metrology system is capable of measuring the reflectivity spectra of the transverse magnetic mode and the transverse electric mode simultaneously. Through the optimal control of the fabrication process and use of sophisticated system instrumentation, the experimental results confirm that the developed ATR system is capable of measuring the resonant angle with an angular accuracy of 10−4 deg.

© 2005 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles

S.-J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee
Opt. Lett. 29(12) 1390-1392 (2004)

Optical approach to angular displacement measurement based on attenuated total reflection

Fan Chen, Zhuangqi Cao, Qishun Shen, and Yaojun Feng
Appl. Opt. 44(26) 5393-5397 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved