Abstract

Fast-Fourier-transform-based simulations of single-layer atmospheric von Kármán phase screens and Kolmogorov scintillation screens up to hundreds of meters in size were implemented and tested for applications with percent range accuracy. The tests included the expected and the observed structure and pupil variance functions; for the phase, the tests also included the Fried turbulence parameter r 0 measured by the seeing and by a simulated differential image motion monitor. The standard compensations used to correct the undersampling at low spatial frequencies were improved, and those needed for the high spatial frequencies were determined analytically. The limiting ratios of the screen sampling step to r 0 and of the screen size to the pupil aperture were estimated by means of the simulated data. Sample results are shown that demonstrate the performances of the simulations for single-layer Kolmogorov and von Kármán phase screens up to 200 m in size and for Kolmogorov scintillation screens for pupils up to 50 m of aperture.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
    [CrossRef]
  2. B. M. Welsh, “A Fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, J. C. Dainty, eds., Proc. SPIE3125, 327–338 (1997).
    [CrossRef]
  3. E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
    [CrossRef]
  4. V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).
  5. D. L. Fried, “Optical resolution through a randomly inhomogeneous medium for very long and very short exposures,” J. Opt. Soc. Am. 56, 1372–1380 (1966).
    [CrossRef]
  6. B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing, J. C. Urbach, ed., Proc. SPIE74, 225–233 (1976).
    [CrossRef]
  7. D. Kouznetsov, V. V. Voitsckhovich, R. Ortega-Martinez, “Simulation of turbulence-induced phase and log-amplitude distortions,” Appl. Opt. 36, 464–469 (1997).
    [CrossRef] [PubMed]
  8. J. E. Nelson, “Design concepts for the California Extremely Large Telescope (CELT),” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. Sebring, T. Andersen, eds., Proc. SPIE4004, 405–419 (2000).
    [CrossRef]
  9. P. Dierickx, R. Gilmozzi, “OWL concept overview,” in Proceedings of Bäckaskog Workshop on Extremely Large Telescopes. T. Andersen, A. Ardeberg, R. Gilmozzi, eds. (European Southern Observatory, Garching, Germany, 2000), Vol. 57, pp. 43–49.
  10. R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).
  11. A. Glindemann, “Photon counting vs. CCD sensors for wavefront sensing—performance comparison in the presence of noise,” in Advanced Technology Optical Telescopes V, L. M. Stepp, ed., Proc. SPIE2199, 824–834 (1994).
    [CrossRef]
  12. F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 281–376.
    [CrossRef]
  13. G. Sedmak, “Performance analysis of and compensation for aspect ratio effects of fast-Fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37, 4605–4613 (1998).
    [CrossRef]
  14. B. J. Herman, L. A. Strugala, “Method for inclusion of low frequency contributions in numerical representation of atmospheric turbulence,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, E. Wilson, eds., Proc. SPIE1221, 183–192 (1990).
    [CrossRef]
  15. R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992).
    [CrossRef]
  16. M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).
  17. H. Jakobsson, “Simulations of time series of atmospherically distorted wave fronts,” Appl. Opt. 35, 1561–1565 (1996).
    [CrossRef] [PubMed]
  18. B. Lopez, M. Sarazin, “The ESO atmospheric temporal coherence monitor dedicated to high angular resolution imaging,” Astron. Astrophys. 276, 320–326 (1993).
  19. I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999).
    [CrossRef]
  20. M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).
  21. D. L. Fried, “Statistics of a geometric representation of wavefront distortion,” J. Opt. Soc. Am. 55, 1427–1435 (1965).
    [CrossRef]
  22. M. C. Roggemann, B. M. Welsh, Imaging through Turbulence (CRC Press, New York, 1996).
  23. R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
    [CrossRef]
  24. R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
    [CrossRef]
  25. J. L. Caccia, M. Azouit, J. Vernin, “Wind and Cn2 profiling by two-color stellar scintillation with atmospheric dispersion,” Appl. Opt. 27, 2229–2235 (1988).
    [CrossRef] [PubMed]
  26. R. E. Hufnagel, “Variations of atmospheric turbulence,” in Optical Propagation through Turbulence, OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1974), paper WA1.
  27. G. R. Ochs, T. Wang, R. S. Lawrence, “Refractive-turbulence profiles measured by one-dimensional spatial filtering of scintillations,” Appl. Opt. 15, 2504–2510 (1976).
    [CrossRef] [PubMed]
  28. V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
    [CrossRef]
  29. R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).
  30. D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997).
    [CrossRef]

2003

M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).

2002

V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).

2000

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

1999

I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999).
[CrossRef]

R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
[CrossRef]

1998

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

G. Sedmak, “Performance analysis of and compensation for aspect ratio effects of fast-Fourier-transform-based simulations of large atmospheric wave fronts,” Appl. Opt. 37, 4605–4613 (1998).
[CrossRef]

1997

D. Kouznetsov, V. V. Voitsckhovich, R. Ortega-Martinez, “Simulation of turbulence-induced phase and log-amplitude distortions,” Appl. Opt. 36, 464–469 (1997).
[CrossRef] [PubMed]

D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997).
[CrossRef]

1996

1993

B. Lopez, M. Sarazin, “The ESO atmospheric temporal coherence monitor dedicated to high angular resolution imaging,” Astron. Astrophys. 276, 320–326 (1993).

1992

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992).
[CrossRef]

1990

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

1988

1976

1966

1965

Adcock, M. J.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Alves, J.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Arad, I.

I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999).
[CrossRef]

Azouit, M.

Azzaro, M.

R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
[CrossRef]

Bracewell, R.

R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).

Brandner, W.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Brightwell, R.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Caccia, J. L.

Dainty, J. C.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992).
[CrossRef]

Dierickx, P.

P. Dierickx, R. Gilmozzi, “OWL concept overview,” in Proceedings of Bäckaskog Workshop on Extremely Large Telescopes. T. Andersen, A. Ardeberg, R. Gilmozzi, eds. (European Southern Observatory, Garching, Germany, 2000), Vol. 57, pp. 43–49.

Dravins, D.

D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997).
[CrossRef]

Eckart, A.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Fernández, M.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Fisk, L. A.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Fried, D. L.

Gavel, D. T.

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
[CrossRef]

Gilmozzi, R.

P. Dierickx, R. Gilmozzi, “OWL concept overview,” in Proceedings of Bäckaskog Workshop on Extremely Large Telescopes. T. Andersen, A. Ardeberg, R. Gilmozzi, eds. (European Southern Observatory, Garching, Germany, 2000), Vol. 57, pp. 43–49.

Glindemann, A.

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992).
[CrossRef]

A. Glindemann, “Photon counting vs. CCD sensors for wavefront sensing—performance comparison in the presence of noise,” in Advanced Technology Optical Telescopes V, L. M. Stepp, ed., Proc. SPIE2199, 824–834 (1994).
[CrossRef]

Greenberg, D. S.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Guenther, E. W.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Herman, B. J.

B. J. Herman, L. A. Strugala, “Method for inclusion of low frequency contributions in numerical representation of atmospheric turbulence,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, E. Wilson, eds., Proc. SPIE1221, 183–192 (1990).
[CrossRef]

Hudson, T.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Huélamo, N.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Hufnagel, R. E.

R. E. Hufnagel, “Variations of atmospheric turbulence,” in Optical Propagation through Turbulence, OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1974), paper WA1.

Jakobsson, H.

Johansson, E. M.

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
[CrossRef]

Kluckers, V. A.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Kouznetsov, D.

L’vov, V. S.

I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999).
[CrossRef]

Lane, R. G.

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992).
[CrossRef]

Lawrence, R. S.

Levenhagen, M.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Lilley, M.

M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).

Lindegren, L.

D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997).
[CrossRef]

Lopez, B.

B. Lopez, M. Sarazin, “The ESO atmospheric temporal coherence monitor dedicated to high angular resolution imaging,” Astron. Astrophys. 276, 320–326 (1993).

Lovejoy, S.

M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).

Maccabe, A. B.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

McGlamery, B. L.

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing, J. C. Urbach, ed., Proc. SPIE74, 225–233 (1976).
[CrossRef]

Mezey, E.

D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997).
[CrossRef]

Munro, I.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Nelson, J. E.

J. E. Nelson, “Design concepts for the California Extremely Large Telescope (CELT),” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. Sebring, T. Andersen, eds., Proc. SPIE4004, 405–419 (2000).
[CrossRef]

Neuhäuser, R.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Nicholls, T. W.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

O’Mahony, N.

R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
[CrossRef]

Ochs, G. R.

Orlov, V. G.

V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).

Ortega-Martinez, R.

Ott, Th.

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

Packhan, C.

R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
[CrossRef]

Procaccia, I.

I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999).
[CrossRef]

Riesen, R.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Roddier, F.

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 281–376.
[CrossRef]

Roddier, N.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

Roggemann, M. C.

M. C. Roggemann, B. M. Welsh, Imaging through Turbulence (CRC Press, New York, 1996).

Sánchez, L. J.

V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).

Sarazin, M.

B. Lopez, M. Sarazin, “The ESO atmospheric temporal coherence monitor dedicated to high angular resolution imaging,” Astron. Astrophys. 276, 320–326 (1993).

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

Schertzer, D.

M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).

Sedmak, G.

Strawbridge, K.

M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).

Strugala, L. A.

B. J. Herman, L. A. Strugala, “Method for inclusion of low frequency contributions in numerical representation of atmospheric turbulence,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, E. Wilson, eds., Proc. SPIE1221, 183–192 (1990).
[CrossRef]

Vernin, J.

Voitsckhovich, V. V.

Voitsekhovich, V. V.

V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).

Wang, T.

Welsh, B. M.

M. C. Roggemann, B. M. Welsh, Imaging through Turbulence (CRC Press, New York, 1996).

B. M. Welsh, “A Fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, J. C. Dainty, eds., Proc. SPIE3125, 327–338 (1997).
[CrossRef]

Wilson, R. W.

R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
[CrossRef]

Wooder, N. J.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Appl. Opt.

Astron. Astrophys.

M. Sarazin, F. Roddier, “The ESO differential image motion monitor,” Astron. Astrophys. 227, 294–300 (1990).

R. Neuhäuser, W. Brandner, A. Eckart, E. W. Guenther, J. Alves, Th. Ott, N. Huélamo, M. Fernández, “On the possibility of ground-based direct imaging detection of extra-solar planets: the case of TWA-7,” Astron. Astrophys. 354, L9–L12 (2000).

B. Lopez, M. Sarazin, “The ESO atmospheric temporal coherence monitor dedicated to high angular resolution imaging,” Astron. Astrophys. 276, 320–326 (1993).

Astron. Astrophys. Suppl. Ser.

V. A. Kluckers, N. J. Wooder, T. W. Nicholls, M. J. Adcock, I. Munro, J. C. Dainty, “Profiling of atmospheric turbulence strength and velocity using a generalised SCIDAR technique,” Astron. Astrophys. Suppl. Ser. 130, 141–155 (1998).
[CrossRef]

Geophys. Res. Abstract

M. Lilley, K. Strawbridge, S. Lovejoy, D. Schertzer, “Direct LIDAR evidence for the anisotropic scaling of atmospheric passive scalar variability,” Geophys. Res. Abstract 5, 11589 (2003).

J. Opt. Soc. Am.

Mon. Not. R. Astron. Soc.

R. W. Wilson, N. O’Mahony, C. Packhan, M. Azzaro, “The seeing at the William Herschel Telescope,” Mon. Not. R. Astron. Soc. 309, 379–387 (1999).
[CrossRef]

Opt. Eng.

N. Roddier, “Atmospheric wavefront simulation using Zernike polynomials,” Opt. Eng. 29, 1174–1180 (1990).
[CrossRef]

Parallel Comput.

R. Brightwell, L. A. Fisk, D. S. Greenberg, T. Hudson, M. Levenhagen, A. B. Maccabe, R. Riesen, “Massively parallel computing using commodity components,” Parallel Comput. 26, 243–266 (2000).
[CrossRef]

Phys. Rev. E.

I. Arad, V. S. L’vov, I. Procaccia, “Correlation functions in isotropic and anisotropic turbulence. The role of the symmetry group,” Phys. Rev. E. 59, 6753–6765 (1999).
[CrossRef]

Publ. Astron. Soc. Pac.

D. Dravins, L. Lindegren, E. Mezey, “Atmospheric intensity scintillation of stars. I. Statistical distribution and temporal statistics,” Publ. Astron. Soc. Pac. 109, 172–207 (1997).
[CrossRef]

Rev. Mex. Astron. Astrophys.

V. V. Voitsekhovich, L. J. Sánchez, V. G. Orlov, “Effect of scintillation on adaptive optics systems,” Rev. Mex. Astron. Astrophys. 38, 193–198 (2002).

Waves Random Media

R. G. Lane, A. Glindemann, J. C. Dainty, “Simulation of a Kolmogorov phase screen,” Waves Random Media 2, 202–224 (1992).
[CrossRef]

Other

B. L. McGlamery, “Computer simulation studies of compensation of turbulence degraded images,” in Image Processing, J. C. Urbach, ed., Proc. SPIE74, 225–233 (1976).
[CrossRef]

R. E. Hufnagel, “Variations of atmospheric turbulence,” in Optical Propagation through Turbulence, OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1974), paper WA1.

J. E. Nelson, “Design concepts for the California Extremely Large Telescope (CELT),” in Telescope Structures, Enclosures, Controls, Assembly/Integration/Validation, and Commissioning, T. Sebring, T. Andersen, eds., Proc. SPIE4004, 405–419 (2000).
[CrossRef]

P. Dierickx, R. Gilmozzi, “OWL concept overview,” in Proceedings of Bäckaskog Workshop on Extremely Large Telescopes. T. Andersen, A. Ardeberg, R. Gilmozzi, eds. (European Southern Observatory, Garching, Germany, 2000), Vol. 57, pp. 43–49.

B. M. Welsh, “A Fourier-series-based atmospheric phase screen generator for simulating nonisoplanatic geometries and temporal evolution,” in Propagation and Imaging through the Atmosphere, L. R. Bissonnette, J. C. Dainty, eds., Proc. SPIE3125, 327–338 (1997).
[CrossRef]

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
[CrossRef]

A. Glindemann, “Photon counting vs. CCD sensors for wavefront sensing—performance comparison in the presence of noise,” in Advanced Technology Optical Telescopes V, L. M. Stepp, ed., Proc. SPIE2199, 824–834 (1994).
[CrossRef]

F. Roddier, “The effects of atmospheric turbulence in optical astronomy,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1981), Vol. 19, pp. 281–376.
[CrossRef]

B. J. Herman, L. A. Strugala, “Method for inclusion of low frequency contributions in numerical representation of atmospheric turbulence,” in Propagation of High-Energy Laser Beams Through the Earth’s Atmosphere, P. B. Ulrich, E. Wilson, eds., Proc. SPIE1221, 183–192 (1990).
[CrossRef]

R. Bracewell, The Fourier Transform and its Applications (McGraw-Hill, New York, 1965).

M. C. Roggemann, B. M. Welsh, Imaging through Turbulence (CRC Press, New York, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Expected structure functions D exp normalized to the theoretical values of extra-large phase screens simulated with the FFT-based method of McGlamery6 for a von Kármán spectrum and the Kolmogorov spectrum. The theoretical structure function D Kolm for the Kolmogorov spectrum is shown for reference.

Fig. 2
Fig. 2

Extra-large phase screen of 200 mm in size and 1024×1024 pixel support simulated for the Kolmogorov spectrum with r 0 = 0.2 m with the FFT-based method of McGlamery6 with high- and low-frequency compensations by the modified method of Lane et al. 15 The print is undersampled by a factor of 5.

Fig. 3
Fig. 3

(a) Expected D exp and (b) observed D obs phase structure functions (thick curves) normalized to theoretical values of extra-large phase screens simulated for the Kolmogorov spectrum with the FFT-based method of McGlamery6 with high- and low-frequency compensations by the original method of Johansson and Gavel.3 The expected and observed standard deviations above the mean are also shown (thin curves).

Fig. 4
Fig. 4

(a) Expected D exp and (b) observed D obs phase structure functions (thick curves) normalized to theoretical values of extra-large phase screens simulated for the Kolmogorov spectrum with the FFT-based method of McGlamery6 with high- and low-frequency compensations by the modified method of Lane et al. 15 The expected and observed standard deviations above the mean are also shown (thin curves).

Fig. 5
Fig. 5

Expected phase structure functions D exp normalized to theoretical values of extra-large phase screens simulated for the von Kármán spectrum with the FFT-based method of McGlamery6 with high- and low-frequency compensations by (a) the original method of Johansson and Gavel3 and (b) the modified method of Lane et al. 15

Fig. 6
Fig. 6

Observed phase variance function normalized to theoretical values of extra-large phase screens simulated for the Kolmogorov spectrum with the FFT-based method of McGlamery6 with high- and low-frequency compensations by the original method of Johansson and Gavel.3 The expected (thin curves) and observed (bars) standard deviations above the mean are shown for reference.

Fig. 7
Fig. 7

Observed phase variance function normalized to theoretical values of extra-large phase screens simulated for the Kolmogorov spectrum with the FFT-based method of McGlamery6 with high- and low-frequency compensations by the modified method of Lane et al. 15 The expected (thin lines) and observed (bars) standard deviations above the means are shown for reference.

Fig. 8
Fig. 8

Normalized intensity section at the center of a long-exposure seeing image obtained by a pupil with a diameter of one half of the screen size from extra-large phase screens simulated for the Kolmogorov spectrum with the FFT-based method of McGlamery6 with high- and low-frequency compensations by the modified method of Lane et al. 15 The normal of FWHM (r 0 = 0.2 m) is shown for reference.

Fig. 9
Fig. 9

Histogram of r 0 data obtained by a simulated DIMM device from extra-large phase screens simulated for the Kolmogorov spectrum with the FFT-based method of McGlamery6 with high- and low frequency compensations by the modified method of Lane et al. 15 The log normal with the mean and standard deviation equal to the observed values is shown for reference.

Fig. 10
Fig. 10

Expected structure functions D exp normalized to theoretical values of extra-large scintillation screens simulated with the FFT-based method of McGlamery6 at various values of the ratio of the screen size to the pupil aperture. The theoretical scintillation structure function D theor is shown for reference.

Fig. 11
Fig. 11

Theoretical and sampled scintillation spectrum in the low-spatial-frequency range. The sampled spectrum approximates the theoretical spectrum for a value of 8 of the ratio of the screen size to the pupil aperture, whereas a value of 2 masks the spectral details.

Fig. 12
Fig. 12

Extra-large scintillation screen simulated for a scintillation index of 0.12 (r 0 = 0.2 m at λ = 550 nm) and a pupil aperture of 50 m with the FFT-based method of McGlamery with high-frequency compensation. The image is the central region of 50 m in size of a screen of 400 m in size and 1024 × 1024 pixel support.

Fig. 13
Fig. 13

(a) Expected D exp and (b) observed D obs scintillation structure functions (thick curves) normalized to theoretical values of extra-large scintillation screens simulated with the FFT-based method of McGlamery with high-frequency compensation. The expected and observed standard deviations above the mean are shown for reference (thin curves).

Fig. 14
Fig. 14

Observed normalized intensity variances computed on simulated scintillation screens with pupil apertures D = D sim from 0.5 to 50 m superimposed to the theoretical function evaluated for a scintillation index of 0.12 (r 0 = 0.2 m at λ = 550 nm). The curve of the theoretical slope D -7/3 is shown for reference.

Tables (3)

Tables Icon

Table 1 Weightsa for the Correction of the Low-Frequency Compensation Method of Lane et al.15

Tables Icon

Table 2 Errors of the Phase Structure and Phase Variance Functions of the Simulationsa

Tables Icon

Table 3 Values and Errors of Fried r0Measured on the Simulationsa

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Pϕf=0.00058r0-5/3f2+1/L02-11/6,
r0=0.185λ6/5cos z3/50 Cn2hdh-3/5,
ϕmnFFT=m=-Nx/2Nx/2-1n=-Ny/2Ny/2-1 TmnHmnFmnFFT×expi2πmm/Nx+nn/Ny, m=-Nx/2, Nx/2-1,n=-Ny/2, Ny/2-1,Tmn=1, m/Nx/22+n/Ny/221,Tmn=0, m/Nx/22+n/Ny/22>1,FmnFFT=0.1513GxGy-1/2r0-5/6m/Gx2+n/Gy2+1/L02-11/12,
Dϕr=2Bϕ0-Bϕr,
ϕmn=ϕmnFFT+interpϕrsSUB, m, n,Nx, Ny, m=-Nx/2, Nx/2-1,n=-Ny/2, Ny/2-1,ϕrsSUB=p=1Np wpm=-NS/2NS/2-1n=-NS/2NS/2-1 HpmnFpmnSUB×expi2π3-pm+ar/Nx+n+as/Ny, r=-Nx/2, Nx/2,stepNx/b, s=-Ny/2, Ny/2,stepNy/b, b>2,FpmnSUB=0.1513GxGy-1/2r0-5/63-p×3-pm+a/Gx2+3-pn+a/Gy2+1/L02-11/12,
wp=Pptot/Pptot-Pp01/2,Pp0=-0.5/3pGx+0.5/3pGxdfx-0.5/3pGy+0.5/3pGydfyPϕWpLOWpHI,Pptot=-1.5/3pGx+1.5/3pGxdfx-1.5/3pGy+1.5/3pGy)dfyPϕWpLOWpHI,WpLO=sinc2πfx3pGxsinc2πfy3pGy,WpHI=sinc2πfx3p-1Gxsinc2πfy3p-1Gy,
whi1+fn fPϕfdffn-bwfn fPϕfdf1/2,
Dφr¯=φr¯+r¯-φr¯2,
r0m=0.98λm/FWHMseeingrad=0.98Gm/FWHMseeingpixel.
Sf=1.54λ-2Aff-11/3k=1NL Cn2hkΔhk×sin2πλhf2,Af=2J1πDf/πDf2,
Cn2h=c02r0-5/32π/λ-2h/h010 exp-h/h1+exp-h/h2,
SmnFFT=m=-Nx/2Nx/2-1n=-Ny/2Ny/2-1 Tmn Hmn FmnFFT×expi2πmm/Nx+nn/Ny, m=-Nx/2, Nx/2-1, n=-Ny/2, Ny/2-1,FmnFFT=GxGy-1/2So1.54 λ-2m/Gx2+n/Gy2-11/62J1πDm/Gx2+ +n/Gy21/2/πDm/Gx2 +n/Gy21/22×k=1NLCn2hkΔhksin2πλhkm/Gx2+n/Gy21/2,
Bsr=2π0 SfJ02πfrfdf,
σI2=2π0fSfdf,

Metrics