Abstract

A technique that is easy to implement and sensitive for measuring lateral oscillation amplitudes of optical fibers on the nanometer scale for shear-force microscopy is described. The measurement system analyzed here is based on using the optical fiber tip as a cylindrical lens to focus and deflect a detection beam. It is shown that for our experimental arrangement, this technique is at least 2.5 times as sensitive as merely shadowing the edge of such a beam, as in most commonly used configurations. As a result, oscillation amplitudes of the order of 2–3 nm may easily be measured. An advantage of this system is that absolute vibration amplitudes are easily measured. A simple geometric model is used to describe the operation of the system.

© 1997 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
    [CrossRef]
  2. E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear-force and scanning near-field optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
    [CrossRef]
  3. G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
    [CrossRef] [PubMed]
  4. M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
    [CrossRef]
  5. C. Durkan, I. V. Shvets, “Study of shear-force as a distance regulation mechanism for scanning near-field optical microscopy,” J. Appl. Phys. 79, 1219–1223 (1996).
    [CrossRef]
  6. C. Durkan, I. V. Shvets, “Investigation of the physical mechanisms of shear-force imaging,” J. Appl. Phys. 80, 5659–5664 (1996).
    [CrossRef]
  7. F. F. Froehlich, T. D. Milster, “Detection of probe dither motion in near-field scanning optical microscopy,” Appl. Opt. 34, 7273–7279 (1995).
    [CrossRef] [PubMed]
  8. R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
    [CrossRef]
  9. B. Hecht, D. W. Pohl, H. Heinzelmann, L. Novotny, “‘Tunnel’ near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.
  10. G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
    [CrossRef]
  11. K. Karrai, R. D. Grober, “Piezoelectric tip–sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 65, 2254–2256 (1994).
  12. J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
    [CrossRef]
  13. J-K. Leong, C. C. Williams, “Shear-force microscopy with capacitance detection for near-field scanning optical microscopy,” Appl. Phys. Lett. 66, 1432–1434 (1995).
    [CrossRef]
  14. C. Durkan, I. V. Shvets, “Reflection-mode SNOM,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E: Applied Sciences Vol. 300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 145–150.
  15. C. Durkan, I. V. Shvets, “40-µm Resolution in reflection-mode SNOM with λ = 685 nm,” in Proceedings of the NFO-3 Conference, Brno, 1995, Ultramicroscopy61 (1–4), 227–231 (1995).
    [CrossRef]
  16. D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
    [CrossRef]

1996 (3)

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Study of shear-force as a distance regulation mechanism for scanning near-field optical microscopy,” J. Appl. Phys. 79, 1219–1223 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Investigation of the physical mechanisms of shear-force imaging,” J. Appl. Phys. 80, 5659–5664 (1996).
[CrossRef]

1995 (5)

G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
[CrossRef]

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

J-K. Leong, C. C. Williams, “Shear-force microscopy with capacitance detection for near-field scanning optical microscopy,” Appl. Phys. Lett. 66, 1432–1434 (1995).
[CrossRef]

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

F. F. Froehlich, T. D. Milster, “Detection of probe dither motion in near-field scanning optical microscopy,” Appl. Opt. 34, 7273–7279 (1995).
[CrossRef] [PubMed]

1994 (2)

K. Karrai, R. D. Grober, “Piezoelectric tip–sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 65, 2254–2256 (1994).

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

1992 (2)

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear-force and scanning near-field optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

1986 (1)

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Betzig, E.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear-force and scanning near-field optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Binnig, G.

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Blome, P. G.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Bopp, M. A.

G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
[CrossRef]

Chen, Y.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Deaver, B. S.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Durkan, C.

C. Durkan, I. V. Shvets, “Study of shear-force as a distance regulation mechanism for scanning near-field optical microscopy,” J. Appl. Phys. 79, 1219–1223 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Investigation of the physical mechanisms of shear-force imaging,” J. Appl. Phys. 80, 5659–5664 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Reflection-mode SNOM,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E: Applied Sciences Vol. 300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 145–150.

C. Durkan, I. V. Shvets, “40-µm Resolution in reflection-mode SNOM with λ = 685 nm,” in Proceedings of the NFO-3 Conference, Brno, 1995, Ultramicroscopy61 (1–4), 227–231 (1995).
[CrossRef]

Finn, P. L.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear-force and scanning near-field optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Froehlich, F. F.

Gerber, Ch.

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Gregor, M. J.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Grober, R. D.

K. Karrai, R. D. Grober, “Piezoelectric tip–sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 65, 2254–2256 (1994).

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

Harris, T. D.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

Hecht, B.

B. Hecht, D. W. Pohl, H. Heinzelmann, L. Novotny, “‘Tunnel’ near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.

Heinzelmann, H.

B. Hecht, D. W. Pohl, H. Heinzelmann, L. Novotny, “‘Tunnel’ near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.

Hsu, J. W. P.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Karrai, K.

K. Karrai, R. D. Grober, “Piezoelectric tip–sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 65, 2254–2256 (1994).

Kavaldjiev, D. I.

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

Lee, M.

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

Leong, J-K.

J-K. Leong, C. C. Williams, “Shear-force microscopy with capacitance detection for near-field scanning optical microscopy,” Appl. Phys. Lett. 66, 1432–1434 (1995).
[CrossRef]

Meixner, A. J.

G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
[CrossRef]

Milster, T. D.

Novotny, L.

B. Hecht, D. W. Pohl, H. Heinzelmann, L. Novotny, “‘Tunnel’ near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.

Pohl, D. W.

B. Hecht, D. W. Pohl, H. Heinzelmann, L. Novotny, “‘Tunnel’ near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.

Quate, C. F.

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Schöfer, J.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Shvets, I. V.

C. Durkan, I. V. Shvets, “Investigation of the physical mechanisms of shear-force imaging,” J. Appl. Phys. 80, 5659–5664 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Study of shear-force as a distance regulation mechanism for scanning near-field optical microscopy,” J. Appl. Phys. 79, 1219–1223 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Reflection-mode SNOM,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E: Applied Sciences Vol. 300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 145–150.

C. Durkan, I. V. Shvets, “40-µm Resolution in reflection-mode SNOM with λ = 685 nm,” in Proceedings of the NFO-3 Conference, Brno, 1995, Ultramicroscopy61 (1–4), 227–231 (1995).
[CrossRef]

Tarrach, G.

G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
[CrossRef]

Toledo-Crow, R.

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Trautman, J. K.

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

Ulbrich, R. G.

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

Vaez-Iravani, M.

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Weiner, J. S.

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear-force and scanning near-field optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

Williams, C. C.

J-K. Leong, C. C. Williams, “Shear-force microscopy with capacitance detection for near-field scanning optical microscopy,” Appl. Phys. Lett. 66, 1432–1434 (1995).
[CrossRef]

Yang, P. C.

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

Zeisel, D.

G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

J-K. Leong, C. C. Williams, “Shear-force microscopy with capacitance detection for near-field scanning optical microscopy,” Appl. Phys. Lett. 66, 1432–1434 (1995).
[CrossRef]

M. J. Gregor, P. G. Blome, J. Schöfer, R. G. Ulbrich, “Probe–surface interaction in near-field optical microscopy: the nonlinear bending force mechanism,” Appl. Phys. Lett. 68, 307–309 (1996).
[CrossRef]

K. Karrai, R. D. Grober, “Piezoelectric tip–sample distance control for near-field optical microscopes,” Appl. Phys. Lett. 65, 2254–2256 (1994).

D. I. Kavaldjiev, R. Toledo-Crow, M. Vaez-Iravani, “On the heating of the fiber tip in a near-field scanning optical microscope,” Appl. Phys. Lett. 67, 2771–2773 (1995).
[CrossRef]

R. Toledo-Crow, P. C. Yang, Y. Chen, M. Vaez-Iravani, “Near-field differential scanning optical microscope with atomic force regulation,” Appl. Phys. Lett. 60, 2957–2959 (1992).
[CrossRef]

E. Betzig, P. L. Finn, J. S. Weiner, “Combined shear-force and scanning near-field optical microscopy,” Appl. Phys. Lett. 60, 2484–2486 (1992).
[CrossRef]

J. Appl. Phys. (2)

C. Durkan, I. V. Shvets, “Study of shear-force as a distance regulation mechanism for scanning near-field optical microscopy,” J. Appl. Phys. 79, 1219–1223 (1996).
[CrossRef]

C. Durkan, I. V. Shvets, “Investigation of the physical mechanisms of shear-force imaging,” J. Appl. Phys. 80, 5659–5664 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

G. Binnig, C. F. Quate, Ch. Gerber, “Atomic force microscope,” Phys. Rev. Lett. 56, 930–933 (1986).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (3)

J. W. P. Hsu, M. Lee, B. S. Deaver, “A nonoptical tip–sample distance control method for near-field scanning optical microscopy using impedance changes in an electromechanical system,” Rev. Sci. Instrum. 66, 3177–3181 (1995).
[CrossRef]

R. D. Grober, T. D. Harris, J. K. Trautman, E. Betzig, “Design and instrumentation of a low temperature near-field scanning optical microscope,” Rev. Sci. Instrum. 65, 626–631 (1994).
[CrossRef]

G. Tarrach, M. A. Bopp, D. Zeisel, A. J. Meixner, “Design and construction of a versatile scanning near-field optical microscope for fluorescence imaging of single molecules,” Rev. Sci. Instrum. 66, 3569–3575 (1995).
[CrossRef]

Other (3)

C. Durkan, I. V. Shvets, “Reflection-mode SNOM,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E: Applied Sciences Vol. 300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 145–150.

C. Durkan, I. V. Shvets, “40-µm Resolution in reflection-mode SNOM with λ = 685 nm,” in Proceedings of the NFO-3 Conference, Brno, 1995, Ultramicroscopy61 (1–4), 227–231 (1995).
[CrossRef]

B. Hecht, D. W. Pohl, H. Heinzelmann, L. Novotny, “‘Tunnel’ near-field optical microscopy: TNOM-2,” in Photons and Local Probes, O. Marti, R. Möller, eds., NATO ASI Series E300 (Kluwer, Dordrecht, The Netherlands, 1995), pp. 93–107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Shear-force approach curves showing the dependence of fiber oscillation amplitude on tip–sample separation for three different initial oscillation amplitudes, for coated tips on carbon sample.

Fig. 2
Fig. 2

Dependence of shear-force damping distance versus initial fiber oscillation amplitude.

Fig. 3
Fig. 3

Shear-force detection setup.

Fig. 4
Fig. 4

Conventional edge-shadowing shear-force detection setup.

Fig. 5
Fig. 5

(a) Profile of detection beam; (b) change in optical signal arriving at the detector due to a 10-nm oscillation of the fiber tip as a percentage of the maximum signal, for different positions across the detection beam.

Fig. 6
Fig. 6

Typical optical signal arriving at the detector as the fiber tip is scanned laterally across the detection beam.

Fig. 7
Fig. 7

Beam geometry for rays passing through the fiber tip.

Fig. 8
Fig. 8

Beam edge positions versus the lateral position of the fiber tip across the detection beam for detector distances of (a) 6 mm and (b) 3 mm.

Fig. 9
Fig. 9

Deflection distance versus vertical separation between the detection fiber and the SNOM fiber tip.

Fig. 10
Fig. 10

Schematic of microscope: t, fiber tip; SFD, shear-force detection setup.

Fig. 11
Fig. 11

Shear-force image of the glass coverslip obtained with the new detection scheme. Scan size: 300 nm × 300 nm × 8 nm.

Tables (1)

Tables Icon

Table 1 Shear-Force Damping Distances for Aluminum and Glass for Both Coated and Uncoated Tips for Initial Oscillation Amplitudes of 5 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ψ1,2x=arcsinχ1,2xR+θ,
χ1,2x=2mxθ+R+d-2mxθ+R+d2-41+m22Rxθ+2dxθ+2Rd+d2+xθ20.521+m2,
ao=kTC1/2,

Metrics