Abstract

A novel means of transducing mechanical force by using a polymeric-based diffractive grating sensor is presented. The diffraction gratings are successfully fabricated upon poly(dimethyl siloxane) polymer substrates by holographic interference and micromolding. A micromaterial tensile test incorporated into the surface diffraction grating experiment showed that a relationship between the load and the observed diffraction-pattern shift could be obtained. The results show an excellent correlation between the optical measurement and load, with a sensitivity of 0.05 N.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. H. Lee and H. R. Nicholls, "Tactile sensing for mechatronics--a state of the art survey," Mechatron 9, pp. 1-33 (1999).
    [CrossRef]
  2. T. R. FilancBowen, G. H. Kim, and Y. M. Shkel, "Novel sensor technology for shear and normal strain detection with generalized electrostriction," in Proceedings of the IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, 2002), Vol. 2, pp. 12-14.
  3. Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
    [CrossRef]
  4. J. Engel, J. Chen, and C. Lui, "Development of polyimide flexible tactile sensor skin," J. Micromech. Microeng. 13, pp. 359-366 (2003).
    [CrossRef]
  5. A. Asundi, "Sampled-speckle photography for measurement of deformation," Opt. Lett. 25, 218-220 (2000).
    [CrossRef]
  6. C. J. Chen, "Study and application of structure sensors with FBG," master's degree thesis (National Taiwan University, 2003).
  7. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
    [CrossRef]
  8. J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
    [CrossRef]
  9. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
    [CrossRef]
  10. H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J.Water, E.Jed, and K.Richard, eds., Proc. SPIE 134, 152-159 (1980).
  11. C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
    [CrossRef]
  12. N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
    [CrossRef]
  13. L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
    [CrossRef]
  14. H. Becker and W. Dietz, "Microfluidic devices for TAS applications fabricated by polymer hot embossing," in Microfluid Devices and Systems, A.B.Frazier and C.H.Ahn, eds., Proc. SPIE 3515, 177-181 (1998).
  15. P. M. Ferm and L. W. Shackjette, "High volume manufacturing of polymer waveguides via UV embossing," in Linear, Nonlinear, and Power-Limiting Organics, M.Eich, M.G.Kuzyk, C.M.Lawson, and R.A.Norwood, eds., Proc. SPIE 4106, 1-10 (2000).
  16. K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
    [CrossRef]
  17. H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
    [CrossRef]
  18. J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
    [CrossRef]
  19. N. S. N. Nath, "The diffraction of light by supersonic waves," Proc. Indian Acad. Sci. A 8, 499-503 (1938).

2003

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
[CrossRef]

J. Engel, J. Chen, and C. Lui, "Development of polyimide flexible tactile sensor skin," J. Micromech. Microeng. 13, pp. 359-366 (2003).
[CrossRef]

2000

A. Asundi, "Sampled-speckle photography for measurement of deformation," Opt. Lett. 25, 218-220 (2000).
[CrossRef]

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

1999

M. H. Lee and H. R. Nicholls, "Tactile sensing for mechatronics--a state of the art survey," Mechatron 9, pp. 1-33 (1999).
[CrossRef]

1998

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

1997

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
[CrossRef]

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

1995

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

1993

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

1938

N. S. N. Nath, "The diffraction of light by supersonic waves," Proc. Indian Acad. Sci. A 8, 499-503 (1938).

Aizenberg, J.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Assanto, G.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Asundi, A.

Bauer, H. D.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Becker, H.

H. Becker and W. Dietz, "Microfluidic devices for TAS applications fabricated by polymer hot embossing," in Microfluid Devices and Systems, A.B.Frazier and C.H.Ahn, eds., Proc. SPIE 3515, 177-181 (1998).

Bergveld, P.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
[CrossRef]

Blomquist, R.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

Breen, T. L.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Chang, Y.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

Chao, C. Y.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

Chen, C. J.

C. J. Chen, "Study and application of structure sensors with FBG," master's degree thesis (National Taiwan University, 2003).

Chen, C. Y.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

Chen, J.

J. Engel, J. Chen, and C. Lui, "Development of polyimide flexible tactile sensor skin," J. Micromech. Microeng. 13, pp. 359-366 (2003).
[CrossRef]

Dietz, W.

H. Becker and W. Dietz, "Microfluidic devices for TAS applications fabricated by polymer hot embossing," in Microfluid Devices and Systems, A.B.Frazier and C.H.Ahn, eds., Proc. SPIE 3515, 177-181 (1998).

Eapen, B. J.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Ehrfeld, W.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Eldada, L.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

Engel, J.

J. Engel, J. Chen, and C. Lui, "Development of polyimide flexible tactile sensor skin," J. Micromech. Microeng. 13, pp. 359-366 (2003).
[CrossRef]

Ferm, P. M.

P. M. Ferm and L. W. Shackjette, "High volume manufacturing of polymer waveguides via UV embossing," in Linear, Nonlinear, and Power-Limiting Organics, M.Eich, M.G.Kuzyk, C.M.Lawson, and R.A.Norwood, eds., Proc. SPIE 4106, 1-10 (2000).

FilancBowen, T. R.

T. R. FilancBowen, G. H. Kim, and Y. M. Shkel, "Novel sensor technology for shear and normal strain detection with generalized electrostriction," in Proceedings of the IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, 2002), Vol. 2, pp. 12-14.

Glass, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

Handa, Y.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J.Water, E.Jed, and K.Richard, eds., Proc. SPIE 134, 152-159 (1980).

Harder, M.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Ho, C.-M.

Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
[CrossRef]

Huang, A.

Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
[CrossRef]

Kang, J. W.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Keicher, D. M.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Kim, D. Y.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Kim, G. H.

T. R. FilancBowen, G. H. Kim, and Y. M. Shkel, "Novel sensor technology for shear and normal strain detection with generalized electrostriction," in Proceedings of the IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, 2002), Vol. 2, pp. 12-14.

Kim, J. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, J. P.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, M. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Koyama, J.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J.Water, E.Jed, and K.Richard, eds., Proc. SPIE 134, 152-159 (1980).

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Lee, J. S.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Lee, M. H.

M. H. Lee and H. R. Nicholls, "Tactile sensing for mechatronics--a state of the art survey," Mechatron 9, pp. 1-33 (1999).
[CrossRef]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Liu, C. W.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

Lotters, J. C.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
[CrossRef]

Lui, C.

J. Engel, J. Chen, and C. Lui, "Development of polyimide flexible tactile sensor skin," J. Micromech. Microeng. 13, pp. 359-366 (2003).
[CrossRef]

Luong, S. O.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Marciniak, M.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Mukherjee, A.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Mukherjee, N.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Nath, N. S. N.

N. S. N. Nath, "The diffraction of light by supersonic waves," Proc. Indian Acad. Sci. A 8, 499-503 (1938).

Nicholls, H. R.

M. H. Lee and H. R. Nicholls, "Tactile sensing for mechatronics--a state of the art survey," Mechatron 9, pp. 1-33 (1999).
[CrossRef]

Nishihara, H.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J.Water, E.Jed, and K.Richard, eds., Proc. SPIE 134, 152-159 (1980).

Norwood, R. A.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

Olthuis, W.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
[CrossRef]

Paatzsch, T.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Paul, K. E.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Poga, C.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

Popp, M.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Shackjette, L. W.

P. M. Ferm and L. W. Shackjette, "High volume manufacturing of polymer waveguides via UV embossing," in Linear, Nonlinear, and Power-Limiting Organics, M.Eich, M.G.Kuzyk, C.M.Lawson, and R.A.Norwood, eds., Proc. SPIE 4106, 1-10 (2000).

Shkel, Y. M.

T. R. FilancBowen, G. H. Kim, and Y. M. Shkel, "Novel sensor technology for shear and normal strain detection with generalized electrostriction," in Proceedings of the IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, 2002), Vol. 2, pp. 12-14.

Smaglinski, F.

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Suhara, T.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J.Water, E.Jed, and K.Richard, eds., Proc. SPIE 134, 152-159 (1980).

Tai, Y.-C.

Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
[CrossRef]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

Veltink, P. H.

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
[CrossRef]

Whitesides, G. M.

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

Xu, Y.

Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
[CrossRef]

Yang, C. C.

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

Yin, S.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

Yoo, S. J.

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Appl. Phys. Lett.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, "Laser-induced holographic surface relief gratings on nonlinear optical polymer films," Appl. Phys. Lett. 66, 1166-1168 (1995).
[CrossRef]

J. W. Kang, M. J. Kim, J. P. Kim, S. J. Yoo, J. S. Lee, D. Y. Kim, and J. J. Kim, "Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films," Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

C. Y. Chao, C. Y. Chen, C. W. Liu, Y. Chang, and C. C. Yang, "Direct writing of silicon gratings with a highly coherent ultraviolet laser," Appl. Phys. Lett. 71, 2442-2444 (1997).
[CrossRef]

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. O. Luong, and A. Mukherjee, "Distributed Bragg reflection in integrated waveguides of polymethyl methacrylate," Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

K. E. Paul, T. L. Breen, J. Aizenberg, and G. M. Whitesides, "Maskless photolithography: embossed photoresister as its own optical element," Appl. Phys. Lett. 73, 2893-2895 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Eldada, S. Yin, C. Poga, C. Glass, R. Blomquist, and R. A. Norwood, "Integrated multichannel OADMS using polymer Bragg grating MZIS," IEEE Photon. Technol. Lett. 10, 1416-1418 (1998).
[CrossRef]

J. Lightwave Technol.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, "Realization of integrated Bragg reflectors in DANs-polymer waveguides," J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

J. Microelectromech. Syst.

Y. Xu, Y.-C. Tai, A. Huang, and C.-M. Ho, "IC-integrated flexible shear-stress sensor skin," J. Microelectromech. Syst. 12, pp. 740-747 (2003).
[CrossRef]

J. Micromech. Microeng.

J. Engel, J. Chen, and C. Lui, "Development of polyimide flexible tactile sensor skin," J. Micromech. Microeng. 13, pp. 359-366 (2003).
[CrossRef]

J. C. Lotters, W. Olthuis, P. H. Veltink, and P. Bergveld, "The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications," J. Micromech. Microeng. 7, 145-147 (1997).
[CrossRef]

Mechatron

M. H. Lee and H. R. Nicholls, "Tactile sensing for mechatronics--a state of the art survey," Mechatron 9, pp. 1-33 (1999).
[CrossRef]

Opt. Lett.

Proc. Indian Acad. Sci. A

N. S. N. Nath, "The diffraction of light by supersonic waves," Proc. Indian Acad. Sci. A 8, 499-503 (1938).

Synth. Metals

H. D. Bauer, W. Ehrfeld, M. Harder, T. Paatzsch, M. Popp, and F. Smaglinski, "Polymer waveguide devices with passive pigtailing: an application of LIGA technology," Synth. Metals 115, 13-20 (2000).
[CrossRef]

Other

T. R. FilancBowen, G. H. Kim, and Y. M. Shkel, "Novel sensor technology for shear and normal strain detection with generalized electrostriction," in Proceedings of the IEEE Conference on Sensors (Institute of Electrical and Electronics Engineers, 2002), Vol. 2, pp. 12-14.

H. Nishihara, Y. Handa, T. Suhara, and J. Koyama, "Electron-beam directly written micro gratings for integrated optical circuits," in Photo- and Electro-Optics in Range Instrumentation, J.Water, E.Jed, and K.Richard, eds., Proc. SPIE 134, 152-159 (1980).

H. Becker and W. Dietz, "Microfluidic devices for TAS applications fabricated by polymer hot embossing," in Microfluid Devices and Systems, A.B.Frazier and C.H.Ahn, eds., Proc. SPIE 3515, 177-181 (1998).

P. M. Ferm and L. W. Shackjette, "High volume manufacturing of polymer waveguides via UV embossing," in Linear, Nonlinear, and Power-Limiting Organics, M.Eich, M.G.Kuzyk, C.M.Lawson, and R.A.Norwood, eds., Proc. SPIE 4106, 1-10 (2000).

C. J. Chen, "Study and application of structure sensors with FBG," master's degree thesis (National Taiwan University, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical setup for grating construction by laser holography.

Fig. 2
Fig. 2

Grating depth as a function of time of exposure of a photoresist to light (0.95 μm grating period; intensity of the combined laser beams, 15 μW.)

Fig. 3
Fig. 3

SEM micrograph of the gratings upon a PDMS polymer.

Fig. 4
Fig. 4

Top view of the PDMS tensile test sample (in millimeters). Two grating patterns were used in the experiment: one with line gratings perpendicular to the direction of the applied tensile load and the other with line gratings tilted at an angle of 45°.

Fig. 5
Fig. 5

MTS test accompanied by the surface diffraction grating experiment (in millimeters). The sample thickness is 92 μm.

Fig. 6
Fig. 6

Optical setup for the 45° diffraction grating measurement.

Fig. 7
Fig. 7

Loading deflection curves for samples without gratings and with 45° and 90° gratings.

Fig. 8
Fig. 8

Displacement of the grating period as a function of tensile force.

Fig. 9
Fig. 9

Angle of rotation as a function of tensile force for a 45° grating.

Equations (69)

Equations on this page are rendered with MathJax. Learn more.

60   years
( e . g . , PVF2 )
PVF2
λ / 2
2.0   cm   by   1.0   cm
0.6   μm
Ultra   123
90 ° C
120 s
60   mW
325  nm
He Cd   laser
Λ = λ sin θ 1 + sin θ 2 ,
θ 1   and   θ 2
θ 1 = θ 2 = θ
Λ = λ 2 sin θ .
18.96 °
Λ = 0.5   μm
3   min
0.460   μm
0.95   μm
3.5   min
15   μW
110 °
120   s
MF26A
30   s
92   μm
0.5 %
5   mm
1   mm
90 °   gratings
45 °   angle
45 °   gratings
He–Ne   laser
( λ = 632.8   nm )
5.6   cm
sin θ d = m ( λ 0 / Λ ) ,
θ d
λ 0
± 1
tan θ d = y / D .
θ d
45 °
45 °   gratings
45 °
0.1   mm∕s
90 °
90°   or   45°
90 °
45 °
45 °
0.6 N
90 °
45 °
45 °   grating
45 °
0.05   N
( + ε y )
( ε x )
45 °
0.05   N
45 °
0.05   N
45 °
45 °
45 °
0.05   N
0.05   N

Metrics