Abstract

Since the publication of the Optical Path Transmittance (OPTRAN) algorithm [Appl. Opt. 34, 8396 (1995)], much of the code and implementation has been refined and improved. The predictor set has been expanded, an objective method to select optimal predictors has been established, and the two-interpolation method has been discarded for a single-interpolation method. The OPTRAN coefficients have been generated for a wide range of satellites and instruments. The most significant new development is the Jacobian-K-matrix version of OPTRAN, which is currently used for operational direct radiance assimilation in both the Global Data Analysis System and the ETA Data Analysis System at the National Oceanographic and Atmospheric Administration, National Weather Service, National Centers for Environmental Prediction Environmental Modeling Center. This paper documents these improvements and serves as a record of the current status of the operational OPTRAN code.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
    [CrossRef] [PubMed]
  2. L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
    [CrossRef]
  3. J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” ECMWF Research Dept. Tech. Memo.176 (1991) (28 pp.; available from The Director, ECMWF, Shinfield Park, Reading, RG29AX, UK).
  4. R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).
  5. M. Matricardi, R. W. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
    [CrossRef]
  6. L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
    [CrossRef]
  7. X. Xiong, L. M. McMillin, T. J. Kleespies are preparing a manuscript titled “Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN approach.”
  8. S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
    [CrossRef]
  9. H. J. Liebe, “An updated model for millimeter wave propagation in moist air,” Radio Sci. 20, 1069–1089 (1985).
    [CrossRef]
  10. P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. AP-23, 498–506 (1975).
    [CrossRef]
  11. H. Woolf, University of Wisconsin-Madison, Madison, Wis. (personal communication, 2001).
  12. M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.
  13. T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002).
    [CrossRef]
  14. L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
    [CrossRef]
  15. R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2nd ed. (Oxford U. Press, New York, 1989), Sec. 6.1.2, p. 221.
  16. H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990).
    [CrossRef] [PubMed]
  17. R. L. Kurucz, “Synthetic infrared spectra, in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, eds., Int. Astron. Union Symp.154, 523–531 (1992).
  18. A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
    [CrossRef]
  19. R. Giering, T. Kaminski, “Recipes for adjoint code construction,” ACM Trans. Math. Software 24, 437–474 (1998).
    [CrossRef]

2003 (1)

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

2002 (1)

T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002).
[CrossRef]

2001 (1)

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

2000 (1)

A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
[CrossRef]

1999 (2)

R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

M. Matricardi, R. W. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

1998 (1)

R. Giering, T. Kaminski, “Recipes for adjoint code construction,” ACM Trans. Math. Software 24, 437–474 (1998).
[CrossRef]

1995 (2)

L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
[CrossRef]

L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
[CrossRef] [PubMed]

1992 (1)

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

1990 (1)

H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990).
[CrossRef] [PubMed]

1985 (1)

H. J. Liebe, “An updated model for millimeter wave propagation in moist air,” Radio Sci. 20, 1069–1089 (1985).
[CrossRef]

1975 (1)

P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. AP-23, 498–506 (1975).
[CrossRef]

Bates, J.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Boukabara, S.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Brunel, P.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

Chevallier, F.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Clough, S. A.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Crone, L. J.

L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
[CrossRef]

L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
[CrossRef] [PubMed]

De Souaz-Machado, S.

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

Deblonde, G.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Derber, J. C.

A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
[CrossRef]

Engelen, R.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Eyre, J. R.

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” ECMWF Research Dept. Tech. Memo.176 (1991) (28 pp.; available from The Director, ECMWF, Shinfield Park, Reading, RG29AX, UK).

Fleming, H. E.

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.

Garand, L.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Giering, R.

R. Giering, T. Kaminski, “Recipes for adjoint code construction,” ACM Trans. Math. Software 24, 437–474 (1998).
[CrossRef]

Goldberg, M. D.

L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
[CrossRef]

Goody, R. M.

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2nd ed. (Oxford U. Press, New York, 1989), Sec. 6.1.2, p. 221.

Greenwald, T. J.

T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002).
[CrossRef]

Gush, H. P.

H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990).
[CrossRef] [PubMed]

Halpern, M.

H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990).
[CrossRef] [PubMed]

Hannon, S. E.

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

Hertenstein, R.

T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002).
[CrossRef]

Hollingshead, M.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Iacono, M. J.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Jackson, D.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Jedlovec, G.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Joiner, J.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Kaminski, T.

R. Giering, T. Kaminski, “Recipes for adjoint code construction,” ACM Trans. Math. Software 24, 437–474 (1998).
[CrossRef]

Katz, B. B.

A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
[CrossRef]

Kleespies, T.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Kleespies, T. J.

L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
[CrossRef]

L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
[CrossRef] [PubMed]

X. Xiong, L. M. McMillin, T. J. Kleespies are preparing a manuscript titled “Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN approach.”

Kurucz, R. L.

R. L. Kurucz, “Synthetic infrared spectra, in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, eds., Int. Astron. Union Symp.154, 523–531 (1992).

Larocque, M.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Liebe, H. J.

H. J. Liebe, “An updated model for millimeter wave propagation in moist air,” Radio Sci. 20, 1069–1089 (1985).
[CrossRef]

Matricardi, M.

M. Matricardi, R. W. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

McKague, D. S.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

McMillin, L.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

McMillin, L. M.

L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
[CrossRef]

L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
[CrossRef] [PubMed]

X. Xiong, L. M. McMillin, T. J. Kleespies are preparing a manuscript titled “Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN approach.”

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.

McNally, A. P.

A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
[CrossRef]

Moncet, J. L.

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Moncet, J.-L.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Motteler, H. E.

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

Neuendorffer, A. C.

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.

Pardo, J. R.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Rayer, P.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Rosenkranz, P. W.

P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. AP-23, 498–506 (1975).
[CrossRef]

Salathe, E.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Saunders, R.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Saunders, R. W.

R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

M. Matricardi, R. W. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

Scott, N. A.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Strow, L. L.

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

Tobin, D. C.

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

Turner, D. S.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Van Delst, P.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

Vukicevic, T.

T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002).
[CrossRef]

Weinreb, M. P.

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.

Wishnow, E. H.

H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990).
[CrossRef] [PubMed]

Woolf, H.

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

H. Woolf, University of Wisconsin-Madison, Madison, Wis. (personal communication, 2001).

Wu, W.

A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
[CrossRef]

Xiong, X.

X. Xiong, L. M. McMillin, T. J. Kleespies are preparing a manuscript titled “Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN approach.”

Yung, Y. L.

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2nd ed. (Oxford U. Press, New York, 1989), Sec. 6.1.2, p. 221.

ACM Trans. Math. Software (1)

R. Giering, T. Kaminski, “Recipes for adjoint code construction,” ACM Trans. Math. Software 24, 437–474 (1998).
[CrossRef]

Appl. Opt. (3)

L. M. McMillin, L. J. Crone, M. D. Goldberg, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 4. OPTRAN: a computationally fast and accurate transmittance model for absorbing gases with fixed and with variable missing ratios at variable viewing angles,” Appl. Opt. 34, 6260–6274 (1995).
[CrossRef]

M. Matricardi, R. W. Saunders, “Fast radiative transfer model for simulation of infrared atmospheric sounding interferometer radiances,” Appl. Opt. 38, 5679–5691 (1999).
[CrossRef]

L. M. McMillin, L. J. Crone, T. J. Kleespies, “Atmospheric transmittance of an absorbing gas. 5. Improvements to the OPTRAN approach,” Appl. Opt. 34, 8396–8399 (1995).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propag. (1)

P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere,” IEEE Trans. Antennas Propag. AP-23, 498–506 (1975).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

L. L. Strow, S. E. Hannon, S. De Souaz-Machado, H. E. Motteler, D. C. Tobin, “An overview of the AIRS radiative transfer model,” IEEE Trans. Geosci. Remote Sens. 41, 303–313 (2003).
[CrossRef]

J. Geophys. Res. (2)

L. Garand, D. S. Turner, M. Larocque, J. Bates, S. Boukabara, P. Brunel, F. Chevallier, G. Deblonde, R. Engelen, M. Hollingshead, D. Jackson, G. Jedlovec, J. Joiner, T. Kleespies, D. S. McKague, L. McMillin, J.-L. Moncet, J. R. Pardo, P. Rayer, E. Salathe, R. Saunders, N. A. Scott, P. Van Delst, H. Woolf, “Radiance and Jacobian intercomparison of radiative transfer models applied to HIRS and AMSU channels,” J. Geophys. Res. 106, 24017–24031 (2001).
[CrossRef]

S. A. Clough, M. J. Iacono, J. L. Moncet, “Line-by-line calculations of atmospheric fluxes and cooling rates: application to water vapor,” J. Geophys. Res. 97, 15761–15785 (1992).
[CrossRef]

Mon. Weather Rev. (1)

T. J. Greenwald, R. Hertenstein, T. Vukicevic, “An all-weather observational operator for radiance data assimilation with mesoscale forecast models,” Mon. Weather Rev. 130, 1882–1897 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

H. P. Gush, M. Halpern, E. H. Wishnow, “Rocket measurement of the cosmic background radiation mm-wave spectrum,” Phys. Rev. Lett. 65, 537–540 (1990).
[CrossRef] [PubMed]

Q. J. R. Meteorol. Soc. (2)

A. P. McNally, J. C. Derber, W. Wu, B. B. Katz, “The use of TOVS level-1b radiances in the NCEP SSI analysis system,” Q. J. R. Meteorol. Soc. 126, 689–724 (2000).
[CrossRef]

R. W. Saunders, M. Matricardi, P. Brunel, “An improved fast radiative transfer model for assimilation of satellite radiance observations,” Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999).

Radio Sci. (1)

H. J. Liebe, “An updated model for millimeter wave propagation in moist air,” Radio Sci. 20, 1069–1089 (1985).
[CrossRef]

Other (6)

X. Xiong, L. M. McMillin, T. J. Kleespies are preparing a manuscript titled “Atmospheric transmittance of an absorbing gas. 7. Further improvements to the OPTRAN approach.”

R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2nd ed. (Oxford U. Press, New York, 1989), Sec. 6.1.2, p. 221.

H. Woolf, University of Wisconsin-Madison, Madison, Wis. (personal communication, 2001).

M. P. Weinreb, H. E. Fleming, L. M. McMillin, A. C. Neuendorffer, “Transmittances for the TIROS Operational Vertical Sounder,” Department of Commerce, National Oceanic and Atmospheric Administration, NOAA Tech. Rep. NESS 85, available from the Director of Office of Research and Applications, NOAA/NESDIS, 5200 Auth Road, Camp Springs, Md. 20746.

R. L. Kurucz, “Synthetic infrared spectra, in Infrared Solar Physics, D. M. Rabin, J. T. Jefferies, eds., Int. Astron. Union Symp.154, 523–531 (1992).

J. R. Eyre, “A fast radiative transfer model for satellite sounding systems,” ECMWF Research Dept. Tech. Memo.176 (1991) (28 pp.; available from The Director, ECMWF, Shinfield Park, Reading, RG29AX, UK).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Mean error and standard error of OPTRAN as a fit to the dependent NESS 32 atmospheric LBL brightness temperature. Emissivity is set to unity. V5 refers to the results given in Ref. 1, and V6 refers to the results of this paper after all the improvements to OPTRAN described in Section 2 have been made.

Fig. 2
Fig. 2

Brightness temperature residuals for updated minus old RTMs for top, the NOAA-16 HIRS and bottom, the AMSU. The AIRS 48 profile set was used. Zenith angles ranged from nadir to 60°. Here and in subsequent figures, AVE means average.

Fig. 3
Fig. 3

Brightness temperature residuals for updated minus old RTMs, showing the effect of the way in which the downwelling thermal radiation is handled for the NOAA-16 HIRS. Top, specular reflectivity; bottom, isotropic reflectivity. Surface emissivity, 0.98 for all channels. The AIRS 48 profile set was used. Zenith angle, 30°.

Fig. 4
Fig. 4

Brightness temperature residuals for updated minus old RTMs, showing the effect of including the cosmic background term for NOAA-16 AMSU. A cosmic background temperature of 2.736 K was used. Surface emissivity, 0.6 for all channels with specular reflectivity. The AIRS 48 profile set was used. Zenith angle, 30°.

Fig. 5
Fig. 5

Top, comparison of top-of-atmosphere Kurucz synthetic solar and blackbody (T = 5783 K) spectra. The NOAA-16 HIRS channel 13–19 spectral response functions are superimposed. Bottom, comparison of top-of-atmosphere Kurucz synthetic solar and blackbody spectra convolved with the NOAA-16 HIRS channel 13–19 spectral response functions.

Fig. 6
Fig. 6

Top, effect of direct solar contribution on brightness temperatures in the updated RTM for NOAA-16 HIRS channels 13–19. Bottom, difference in direct solar contribution from use of Kurucz or blackbody (T = 5783 K) derived top-of-atmosphere solar irradiance for NOAA-16 HIRS channels 13–19. Surface emissivity, 0.98 for all channels with isotropic reflectivity. The AIRS 48 profile set was used. Zenith angle, 30°; solar zenith angle, 45°.

Tables (2)

Tables Icon

Table 1 Predictors Used in OPTRAN

Tables Icon

Table 2 Instruments for Which OPTRAN Coefficients Are Availablea

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τfτθd,
Jx=x-xbTB-1x-xb+yo-yxTR-1yo-yx,
Jx=B-1x-xb-KxTR-1yo-yx=0,
δyn=TLMx, δxm, m=1, 2,, M, n=1, 2,, N.
δ*xm=ADMx, δ*yn, n=1, 2,, N, m=1, 2,, M,
Δ=δy-δ*xT.

Metrics