Abstract

Phase-shifting point-diffraction interferometry at the 193-nm wavelength suitable for highly accurate measurement of wave-front aberration is introduced. The interferometer preserves the advantages of the previously described extreme-ultraviolet phase-shifting point-diffraction interferometer but offers higher relative efficiency. Wave-front measurement of an imaging system, operating at the 193-nm wavelength, is reported. Direct measurement of the refractive-index change in a deep-ultraviolet radiation-damaged fused-silica sample is also presented as an application.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Medecki, E. Tejnil, K. A. Goldberg, J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996).
    [CrossRef] [PubMed]
  2. E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
    [CrossRef]
  3. K. Goldberg, P. Naulleau, J. Bokor, “EUV interferometric measurements of diffraction-limited optics,” J. Vac. Sci. Technol. B 17, 2982–2986 (1999).
    [CrossRef]
  4. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
    [CrossRef]
  5. P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
    [CrossRef]
  6. W. Linnk, “A simple interferometer to test optical systems,” Proc. Acad. Sci. USSR 1, 210–212 (1933).
  7. R. N. Smartt, W. H. Steel, “Theory and application of point diffraction interferometers,” Japan. J. Appl. Phys. 14, Suppl. 14-1, 351–356 (1975).
  8. K. Goldberg, “EUV interferometry,” Ph.D. dissertation (Department of Physics, University of California, Berkeley, Berkeley, Calif., 1997).
  9. D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1992).
  10. W. G. Oldham, R. E. Schenker, “193-nm lithographic system lifetimes as limited by UV compaction,” Solid State Technol. 40, 95–102 (1997).
  11. M. Rothschild, D. J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
    [CrossRef]
  12. D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
    [CrossRef] [PubMed]
  13. R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
    [CrossRef]
  14. F. Piao, R. Schenker, W. G. Oldham, “Temperature dependence of UV-induced compaction in fused silica,” in Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 907–912 (1997).
    [CrossRef]
  15. S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
    [CrossRef]

1999 (2)

1997 (3)

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

W. G. Oldham, R. E. Schenker, “193-nm lithographic system lifetimes as limited by UV compaction,” Solid State Technol. 40, 95–102 (1997).

1996 (2)

1989 (1)

M. Rothschild, D. J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

1975 (1)

R. N. Smartt, W. H. Steel, “Theory and application of point diffraction interferometers,” Japan. J. Appl. Phys. 14, Suppl. 14-1, 351–356 (1975).

1933 (1)

W. Linnk, “A simple interferometer to test optical systems,” Proc. Acad. Sci. USSR 1, 210–212 (1933).

Allan, D. C.

Attwood, D.

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
[CrossRef]

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Batson, P.

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Batson, P. J.

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

Bokor, J.

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
[CrossRef]

K. Goldberg, P. Naulleau, J. Bokor, “EUV interferometric measurements of diffraction-limited optics,” J. Vac. Sci. Technol. B 17, 2982–2986 (1999).
[CrossRef]

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

H. Medecki, E. Tejnil, K. A. Goldberg, J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996).
[CrossRef] [PubMed]

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

Borrelli, N. F.

Bresloff, C.

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Chang, C.

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
[CrossRef]

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Denham, P. E.

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

Ehrlich, D. J.

M. Rothschild, D. J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Goldberg, K.

K. Goldberg, P. Naulleau, J. Bokor, “EUV interferometric measurements of diffraction-limited optics,” J. Vac. Sci. Technol. B 17, 2982–2986 (1999).
[CrossRef]

K. Goldberg, “EUV interferometry,” Ph.D. dissertation (Department of Physics, University of California, Berkeley, Berkeley, Calif., 1997).

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

Goldberg, K. A.

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
[CrossRef]

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

H. Medecki, E. Tejnil, K. A. Goldberg, J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996).
[CrossRef] [PubMed]

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Lee, S.

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

Lee, S. H.

P. P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, D. Attwood, J. Bokor, “Extreme-ultraviolet phase-shifting point-diffraction interferometer: a wave-front metrology tool with subangstrom reference-wave accuracy,” Appl. Opt. 38, 7252–7263 (1999).
[CrossRef]

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Linnk, W.

W. Linnk, “A simple interferometer to test optical systems,” Proc. Acad. Sci. USSR 1, 210–212 (1933).

MacDowell, A. A.

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

Medecki, H.

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

H. Medecki, E. Tejnil, K. A. Goldberg, J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996).
[CrossRef] [PubMed]

Naulleau, P.

K. Goldberg, P. Naulleau, J. Bokor, “EUV interferometric measurements of diffraction-limited optics,” J. Vac. Sci. Technol. B 17, 2982–2986 (1999).
[CrossRef]

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

Naulleau, P. P.

Oldham, W.

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

Oldham, W. G.

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

W. G. Oldham, R. E. Schenker, “193-nm lithographic system lifetimes as limited by UV compaction,” Solid State Technol. 40, 95–102 (1997).

F. Piao, R. Schenker, W. G. Oldham, “Temperature dependence of UV-induced compaction in fused silica,” in Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 907–912 (1997).
[CrossRef]

Piao, F.

F. Piao, R. Schenker, W. G. Oldham, “Temperature dependence of UV-induced compaction in fused silica,” in Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 907–912 (1997).
[CrossRef]

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

Rothschild, M.

M. Rothschild, D. J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Schenker, R.

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

F. Piao, R. Schenker, W. G. Oldham, “Temperature dependence of UV-induced compaction in fused silica,” in Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 907–912 (1997).
[CrossRef]

Schenker, R. E.

W. G. Oldham, R. E. Schenker, “193-nm lithographic system lifetimes as limited by UV compaction,” Solid State Technol. 40, 95–102 (1997).

Seward, T. P.

Shaver, D. C.

M. Rothschild, D. J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Smartt, R. N.

R. N. Smartt, W. H. Steel, “Theory and application of point diffraction interferometers,” Japan. J. Appl. Phys. 14, Suppl. 14-1, 351–356 (1975).

Smith, C.

Steel, W. H.

R. N. Smartt, W. H. Steel, “Theory and application of point diffraction interferometers,” Japan. J. Appl. Phys. 14, Suppl. 14-1, 351–356 (1975).

Tejnil, E.

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

H. Medecki, E. Tejnil, K. A. Goldberg, J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526–1528 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Rothschild, D. J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction, and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

J Vac. Sci. Technol. B (1)

E. Tejnil, K. A. Goldberg, S. H. Lee, H. Medecki, P. J. Batson, P. E. Denham, A. A. MacDowell, J. Bokor, “At-wavelength interferometry for EUV lithography,” J Vac. Sci. Technol. B 15, 2455–2461 (1997).
[CrossRef]

J. Appl. Phys. (1)

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

K. Goldberg, P. Naulleau, J. Bokor, “EUV interferometric measurements of diffraction-limited optics,” J. Vac. Sci. Technol. B 17, 2982–2986 (1999).
[CrossRef]

Japan. J. Appl. Phys. (1)

R. N. Smartt, W. H. Steel, “Theory and application of point diffraction interferometers,” Japan. J. Appl. Phys. 14, Suppl. 14-1, 351–356 (1975).

Opt. Lett. (2)

Proc. Acad. Sci. USSR (1)

W. Linnk, “A simple interferometer to test optical systems,” Proc. Acad. Sci. USSR 1, 210–212 (1933).

Solid State Technol. (1)

W. G. Oldham, R. E. Schenker, “193-nm lithographic system lifetimes as limited by UV compaction,” Solid State Technol. 40, 95–102 (1997).

Other (5)

K. Goldberg, “EUV interferometry,” Ph.D. dissertation (Department of Physics, University of California, Berkeley, Berkeley, Calif., 1997).

D. Malacara, ed., Optical Shop Testing (Wiley, New York, 1992).

P. Naulleau, K. A. Goldberg, S. H. Lee, C. Chang, C. Bresloff, P. Batson, D. Attwood, J. Bokor, “Characterization of the accuracy of EUV phase-shifting point diffraction interferometry,” in Emerging Lithographic Technologies II, Y. Vladimirsky, ed., Proc. SPIE3331, 114–123 (1998).
[CrossRef]

F. Piao, R. Schenker, W. G. Oldham, “Temperature dependence of UV-induced compaction in fused silica,” in Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 907–912 (1997).
[CrossRef]

S. Lee, F. Piao, P. Naulleau, K. Goldberg, W. Oldham, J. Bokor, “At-wavelength characterization of DUV-radiation-induced damage in fused silica,” in Metrology, Inspection, and Process Control for Microlithography XIV, N. T. Sullivan, ed., Proc. SPIE3998, 724–731 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of conventional PS/PDI configuration used at EUV wavelengths to test lithographic optics. The grating is placed after the object pinhole. (b) Schematic diagram of the upstream-grating PS/PDI configuration used at the 193-nm wavelength. Placement of the grating before the object-plane pinhole improves the throughput of the interferometer.

Fig. 2
Fig. 2

Experimental configuration of the 193-nm PS/PDI. The turning mirror is required because of space constraint. L, lens; M, mirror; P, pinhole.

Fig. 3
Fig. 3

(a) Representative interferogram obtained during testing of the optical imaging system comprised of lenses L4 and L5 and mirror M1. (b) Resultant wave front: The peak-to-valley wave-front error is 0.3 waves and the rms error is 0.05 waves at 193-nm wavelength over a 0.035 NA. (c) Thirty-six Zernike polynomial decomposition of the wave front; the most significant term is coma.

Fig. 4
Fig. 4

(a) Representative interferogram obtained with the damaged fused-silica sample installed. (b) Resultant wave front indicating a damaged region at the center of the 15-mm-diameter test area.

Metrics