Abstract

We report on narrow-linewidth long-pulse laser emission from a dispersive solid-state dye-laser oscillator. Output energy was ∼0.4 mJ/pulse at laser linewidths of 650 MHz and pulse lengths of 105 ns FWHM. The solid-state gain medium utilized was Rhodamine 6G dye-doped 2-hydroxyethyl methacrylate:methyl methacrylate.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
    [CrossRef] [PubMed]
  2. F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
    [CrossRef]
  3. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
    [CrossRef]
  4. F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. (to be published).
  5. R. C. Sze, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (personal communication, 1997).
  6. F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
    [CrossRef]
  7. A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
    [CrossRef]
  8. A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
    [CrossRef]
  9. F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
    [CrossRef]
  10. F. J. Duarte, “On a generalized interference equation and interferometric measurements,” Opt. Commun. 103, 8–14 (1993).
    [CrossRef]
  11. T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
    [CrossRef]

1997 (1)

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

1996 (2)

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

1995 (1)

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

1994 (1)

1993 (1)

F. J. Duarte, “On a generalized interference equation and interferometric measurements,” Opt. Commun. 103, 8–14 (1993).
[CrossRef]

1991 (1)

F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
[CrossRef]

1984 (1)

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

Amat-Guerri, F.

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Costela, A.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Davenport, W. E.

F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
[CrossRef]

Duarte, F. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
[CrossRef] [PubMed]

F. J. Duarte, “On a generalized interference equation and interferometric measurements,” Opt. Commun. 103, 8–14 (1993).
[CrossRef]

F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
[CrossRef]

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. (to be published).

F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
[CrossRef]

Ehrlich, J. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
[CrossRef]

Figuera, J. M.

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Garcia-Moreno, I.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Laudenslager, J. B.

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

Mallavia, R.

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

McDermid, I. S.

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

Pacala, T. J.

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

Santa-Maria, M. D.

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Sastre, R.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Sze, R. C.

R. C. Sze, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (personal communication, 1997).

Taylor, T. S.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Sastre, “Solid-state dye lasers based on polymers incorporating covalently bonded modified rhodamine 6G,” Appl. Phys. Lett. 68, 593–595 (1996).
[CrossRef]

T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single longitudinal mode operation of an XeCl laser,” Appl. Phys. Lett. 45, 507–509 (1984).
[CrossRef]

J. Appl. Phys. (1)

A. Costela, I. Garcia-Moreno, J. M. Figuera, F. Amat-Guerri, R. Mallavia, M. D. Santa-Maria, R. Sastre, “Solid-state dye lasers based on modified rhodamine 6G dyes copolymerized with methacrylic monomers,” J. Appl. Phys. 80, 3167–3173 (1996).
[CrossRef]

Opt. Commun. (3)

F. J. Duarte, W. E. Davenport, J. J. Ehrlich, T. S. Taylor, “Ruggedized narrow-linewidth dispersive dye laser oscillator,” Opt. Commun. 84, 310–316 (1991).
[CrossRef]

F. J. Duarte, “On a generalized interference equation and interferometric measurements,” Opt. Commun. 103, 8–14 (1993).
[CrossRef]

F. J. Duarte, “Solid-state dispersive dye laser oscillator: very compact cavity,” Opt. Commun. 117, 480–484 (1995).
[CrossRef]

Opt. Quantum Electron. (1)

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Ehrlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 19, 461–472 (1997).
[CrossRef]

Other (3)

F. J. Duarte, “Multiple-prism near-grazing-incidence grating solid-state dye-laser oscillator,” Opt. Laser Technol. (to be published).

R. C. Sze, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (personal communication, 1997).

F. J. Duarte, “Narrow-linewidth pulsed dye laser oscillators,” in Dye Laser Principles, F. J. Duarte, L. W. Hillman, eds. (Academic, New York, 1990), pp. 133–183.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the solid-state multiple-prism Littrow grating dye-laser oscillator. The multiple-prism expander is deployed in a compensating configuration.

Fig. 2
Fig. 2

Temporal pulse in the long-pulse regime. The weak oscillatory behavior denotes double-longitudinal-mode oscillation with a strong primary mode and a rather weak secondary mode. The lack of oscillatory behavior during the first 10 ns is indicative of single-mode lasing during the initial part of the pulse. The horizontal scale is 20 ns/div.

Fig. 3
Fig. 3

Interferogram obtained with a Fabry–Perot etalon at a free spectral range of 7.49 GHz. The smooth appearance of the rings denote near-single-longitudinal-mode oscillation.

Metrics