Abstract

The influence of spherical aberration on axial imaging of confocal reflection microscopy is investigated. In particular, the effects of lens aperture size and of the first three orders of spherical aberration are inspected. It is shown both theoretically and experimentally that the aberrated axial response can be improved by slightly reducing the lens aperture size. The experimental results concerning the effect of the tube length on the axial response and the aberration compensation are also given.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, pp. 1–98.
  2. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  3. H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989).
    [CrossRef]
  4. C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
    [CrossRef] [PubMed]
  5. C. J. R. Sheppard, M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180–190 (1992).
    [CrossRef]
  6. C. J. R. Sheppard, C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).
  7. K. Carlsson, “The influence of specimen refractive index, non-uniform scanning speed, and detector signal integration on the imaging quality in confocal microscopy,” Trans. R. Microsc. Soc. 1, 219–222 (1990).
  8. C. J. R. Sheppard, T. Wilson, “Effects of high angle of convergence on V(z) in the scanning acoustic microscopy,” Appl. Phys. Lett. 38, 858–859 (1981).
    [CrossRef]
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 752.
  10. C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
    [CrossRef]

1992 (1)

C. J. R. Sheppard, M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180–190 (1992).
[CrossRef]

1991 (2)

C. J. R. Sheppard, C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

1990 (2)

C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
[CrossRef]

K. Carlsson, “The influence of specimen refractive index, non-uniform scanning speed, and detector signal integration on the imaging quality in confocal microscopy,” Trans. R. Microsc. Soc. 1, 219–222 (1990).

1989 (1)

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989).
[CrossRef]

1981 (1)

C. J. R. Sheppard, T. Wilson, “Effects of high angle of convergence on V(z) in the scanning acoustic microscopy,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 752.

Carlsson, K.

K. Carlsson, “The influence of specimen refractive index, non-uniform scanning speed, and detector signal integration on the imaging quality in confocal microscopy,” Trans. R. Microsc. Soc. 1, 219–222 (1990).

Cogswell, C. J.

C. J. R. Sheppard, C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
[CrossRef]

Gu, M.

C. J. R. Sheppard, M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180–190 (1992).
[CrossRef]

C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

Hamilton, D. K.

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989).
[CrossRef]

Howard, C. V.

C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
[CrossRef]

Matthews, H. J.

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989).
[CrossRef]

Moss, C. C.

C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard, M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180–190 (1992).
[CrossRef]

C. J. R. Sheppard, M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30, 3563–3568 (1991).
[CrossRef] [PubMed]

C. J. R. Sheppard, C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
[CrossRef]

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989).
[CrossRef]

C. J. R. Sheppard, T. Wilson, “Effects of high angle of convergence on V(z) in the scanning acoustic microscopy,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, pp. 1–98.

Wilson, T.

C. J. R. Sheppard, T. Wilson, “Effects of high angle of convergence on V(z) in the scanning acoustic microscopy,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 752.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C. J. R. Sheppard, T. Wilson, “Effects of high angle of convergence on V(z) in the scanning acoustic microscopy,” Appl. Phys. Lett. 38, 858–859 (1981).
[CrossRef]

J. Microsc. (1)

C. J. Cogswell, C. J. R. Sheppard, C. C. Moss, C. V. Howard, “A method for evaluating microscope objectives to optimise performance of confocal systems,” J. Microsc. 158, 177–186 (1990).
[CrossRef]

J. Mod. Opt. (1)

H. J. Matthews, D. K. Hamilton, C. J. R. Sheppard, “Aberration measurement by confocal interferometry,” J. Mod. Opt. 36, 233–250 (1989).
[CrossRef]

Opt. Commun. (1)

C. J. R. Sheppard, M. Gu, “Axial imaging through an aberrating layer of water in confocal microscopy,” Opt. Commun. 88, 180–190 (1992).
[CrossRef]

Optik (1)

C. J. R. Sheppard, C. J. Cogswell, “Effects of aberrating layers and tube length on confocal imaging properties,” Optik 87, 34–38 (1991).

Trans. R. Microsc. Soc. (1)

K. Carlsson, “The influence of specimen refractive index, non-uniform scanning speed, and detector signal integration on the imaging quality in confocal microscopy,” Trans. R. Microsc. Soc. 1, 219–222 (1990).

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 752.

C. J. R. Sheppard, “Scanning optical microscopy,” in Advances in Optical and Electron Microscopy, R. Barer, V. E. Cosslett, eds. (Academic, London, 1987), Vol. 10, pp. 1–98.

T. Wilson, Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spherical aberrations as a function of angle θ when A = 100 for Φ A , B = 26.66 for Φ B , and A = 100 and B = −26.66 for Φ A + Φ B .

Fig. 2
Fig. 2

Half-width as a function of the semiangular aperture α for unbalanced and balanced cases.

Fig. 3
Fig. 3

Peak intensity as a function of the semiangular aperture α for unbalanced and balanced cases.

Fig. 4
Fig. 4

Optimum semiangular aperture as a function of A for unbalanced and balanced cases.

Fig. 5
Fig. 5

Optimum half-width as a function of A for unbalanced and balanced cases.

Fig. 6
Fig. 6

Optimum peak intensity as a function of A for unbalanced and balanced cases.

Fig. 7
Fig. 7

Axial responses when A = 100: (a) including the defocus (s 2) term; (b) including the defocus (s 2) and the primary (s 4) spherical aberration terms; (c) including the defocus (s 2) and the fifth-order (s 6) spherical aberration terms; (d) including the defocus (s 2) and the seventh-order (s 8) spherical aberration terms; (e) including the defocus (s 2), the primary (s 4), and the fifth-order (s 6) spherical aberration terms; (f ) including the defocus (s 2), the primary (s 4), the fifth-order (s 6), and the seventh-order (s 8) spherical aberration terms.

Fig. 8
Fig. 8

Experimental setup: O1, O2, objectives; L1, L2, lenses; C, correction lens; P1, P2, pinholes; D, detector; BS, beam splitter; S, diaphragm; M, mirror acting as an object; Os, oscilloscope; Pi, piezodriver.

Fig. 9
Fig. 9

Axial responses for the Plan-Apochromat objective with a negative correction lens: (a) f = 0 mm, (b) f = −4000 mm, (c) f = −2000 mm, (d) f = −1000 mm.

Fig. 10
Fig. 10

Axial responses for the Plan-Apochromat objective with a positive correction lens: (a) f = 4000 mm, (b) f = 2000 mm, (c) f = 1000 mm, (d) f = 500 mm.

Fig. 11
Fig. 11

Axial responses for the Plan-Apochromat objective with a cover glass: (a) without any correction lens, (b) with a negative correction lens (f = −4000).

Fig. 12
Fig. 12

Measured axial responses for different diameters (D) of the entrance pupil of the objective: (a) D = 6.5 mm with a number 1½ cover glass of thickness 0.17 mm, (b) D = 6.5 mm with a number 1 cover glass of thickness 0.12 mm, (c) D = 5 mm with a number 1 cover glass of thickness 0.12 mm, (d) D = 4.5 mm with a number 1 cover glass of thickness 0.12 mm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = | 0 α R ( θ ) P 2 ( θ ) exp ( i 2 k z cos θ ) sin θ cos θ d θ | 2 ,
Φ A = A sec θ ,
A = k t Δ n .
P ( θ ) = exp ( i Φ A ) .
Φ B = B tan 2 θ,
P ( θ ) = exp [ i ( Φ A + Φ B ) ] .
A = 3 . 75 B .
Φ A = A ( 1 + 2 s 2 + 4 s 4 + 8 s 6 + + 2 n s 2 n + ) ,
s = sin ( θ / 2 ) ,

Metrics