Abstract

All butterfly and moth scales share the same basic architecture, but various elements of this architecture are in those scales that exhibit structural colors. These elements include the scales’ ridges particularly complex and microribs, and the trabeculae, the pillars normally that act as spacers within and their associated lamellae ornamentation produces thin film, Tyndall blue or diffraction colors and represents a scales. The additional particularly striking example of precision in biological pattern formation.

© 1991 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30, 383–395 (1926).
    [CrossRef]
  2. C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
    [CrossRef]
  3. C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31, 1856–1872 (1927).
    [CrossRef]
  4. A. C. Allyn, J. Downey, “Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae),” Bull. Allyn Mus. 40, 1–6 (1976).
  5. A. C. Allyn, J. C. Downey, “Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae),” Bull. Allyn Mus. 42, 1–20 (1977).
  6. H. Ghiradella, “Development of ultraviolet-reflecting butterfly scales: how to make an interference filter,” J. Morphol. 142, 395–410 (1974).
    [CrossRef]
  7. H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–645 (1984).
  8. H. Ghiradella, “Structure and Development of iridescent lepidopteran scales: the papilionidae as a showcase family,” Ann. Entomol. Soc. Am. 78, 252–264 (1986).
  9. H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202, 69–88 (1989).
    [CrossRef]
  10. H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
    [CrossRef] [PubMed]
  11. H. Ghiradella, W. Radigan, “Development of butterfly scales. II. Struts, lattices, and surface tension,” J. Morphol. 150, 279–298 (1976).
    [CrossRef]
  12. M. E. Greenstein, “The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale forming and socket forming cells,” J. Morphol. 136, 23–52 (1972).
    [CrossRef] [PubMed]
  13. J. Huxley, “The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies,” Proc. R. Soc. London Ser. B 193, 441–453 (1976).
    [CrossRef]
  14. W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- and Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
    [CrossRef]
  15. R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the green hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
    [CrossRef]
  16. K. Schmidt, H. Paulus, “Die Feinstrukturen der Flugelschuppen einiger Lycaeniden (Insecta, Lepidoptera),” Z. Morphol. Tiere 66, 224–241 (1970).
    [CrossRef]
  17. A. Spurr, “A low viscosity epoxy resin embedding medium for electron microscopy,” J. Ultrastruct. Res. 26, 31–43 (1969).
    [CrossRef] [PubMed]
  18. J. Venable, R. Coggeshall, “A simplified lead citrate stain for use in electron microscopy,” J. Cell Biol. 25, 407–408 (1965).
    [CrossRef] [PubMed]
  19. J. Overton, “Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kuhniella,” J. Cell Biol. 29, 293–305 (1966).
    [CrossRef] [PubMed]
  20. N. Paweletz, F. W. Schlote, “Die Entwicklung der Schmetterlingsshuppe bei Ephestia kuhniella Zeller,” Z. Zellforsch. Mikrosk. Anat. 63, 840–870 (1964).
    [CrossRef] [PubMed]
  21. J. Nardi, S. M. MaGee-Adams, “Formation of scale spacing patterns in a moth wing. I. epithelial feet may mediate cell rearrangement,” Dev. Biol. 116, 278–290 (1986).
    [CrossRef]
  22. M. Locke, “The structure and formation of cuticulin layer in the epicuticle of an insect, Calpodes ethlius (lepidoptera, hesperidae),” J. Morphol. 118, 461–494 (1966).
    [CrossRef] [PubMed]
  23. S. Timoshenko, J. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).
  24. A. C. Neville, S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
    [CrossRef] [PubMed]
  25. S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London Ser. B 178, 205–225 (1971).
    [CrossRef]
  26. T. Eisner, Division of Neurobiology and Behavior; Cornell University, Ithaca, New York 14853 (personal communication).
  27. R. E. Silberglied, “Ultraviolet reflection of pierid butterflies: phylogenetic implications and biological significance,” M.S. thesis, Cornell University, Ithaca, N.Y. (1969).
  28. R. E. Silberglied, “Ultraviolet reflection of butterflies and its behavioral role in the genus, Colias (Lepidoptera—Pieridae),” Ph.D. dissertation (Harvard University, Cambridge, Mass., 1973).
  29. R. E. Silberglied, O. R. Taylor, “Ultraviolet differences between the Sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism,” Nature (London) 241, 406–408 (1973).
    [CrossRef]

1989

H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202, 69–88 (1989).
[CrossRef]

1986

H. Ghiradella, “Structure and Development of iridescent lepidopteran scales: the papilionidae as a showcase family,” Ann. Entomol. Soc. Am. 78, 252–264 (1986).

J. Nardi, S. M. MaGee-Adams, “Formation of scale spacing patterns in a moth wing. I. epithelial feet may mediate cell rearrangement,” Dev. Biol. 116, 278–290 (1986).
[CrossRef]

1984

H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–645 (1984).

1977

A. C. Allyn, J. C. Downey, “Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae),” Bull. Allyn Mus. 42, 1–20 (1977).

1976

A. C. Allyn, J. Downey, “Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae),” Bull. Allyn Mus. 40, 1–6 (1976).

H. Ghiradella, W. Radigan, “Development of butterfly scales. II. Struts, lattices, and surface tension,” J. Morphol. 150, 279–298 (1976).
[CrossRef]

J. Huxley, “The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies,” Proc. R. Soc. London Ser. B 193, 441–453 (1976).
[CrossRef]

1975

R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the green hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
[CrossRef]

1974

H. Ghiradella, “Development of ultraviolet-reflecting butterfly scales: how to make an interference filter,” J. Morphol. 142, 395–410 (1974).
[CrossRef]

1973

R. E. Silberglied, O. R. Taylor, “Ultraviolet differences between the Sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism,” Nature (London) 241, 406–408 (1973).
[CrossRef]

1972

M. E. Greenstein, “The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale forming and socket forming cells,” J. Morphol. 136, 23–52 (1972).
[CrossRef] [PubMed]

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

1971

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London Ser. B 178, 205–225 (1971).
[CrossRef]

1970

K. Schmidt, H. Paulus, “Die Feinstrukturen der Flugelschuppen einiger Lycaeniden (Insecta, Lepidoptera),” Z. Morphol. Tiere 66, 224–241 (1970).
[CrossRef]

1969

A. Spurr, “A low viscosity epoxy resin embedding medium for electron microscopy,” J. Ultrastruct. Res. 26, 31–43 (1969).
[CrossRef] [PubMed]

A. C. Neville, S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[CrossRef] [PubMed]

1966

M. Locke, “The structure and formation of cuticulin layer in the epicuticle of an insect, Calpodes ethlius (lepidoptera, hesperidae),” J. Morphol. 118, 461–494 (1966).
[CrossRef] [PubMed]

J. Overton, “Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kuhniella,” J. Cell Biol. 29, 293–305 (1966).
[CrossRef] [PubMed]

1965

J. Venable, R. Coggeshall, “A simplified lead citrate stain for use in electron microscopy,” J. Cell Biol. 25, 407–408 (1965).
[CrossRef] [PubMed]

1964

N. Paweletz, F. W. Schlote, “Die Entwicklung der Schmetterlingsshuppe bei Ephestia kuhniella Zeller,” Z. Zellforsch. Mikrosk. Anat. 63, 840–870 (1964).
[CrossRef] [PubMed]

1959

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- and Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

1927

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31, 1856–1872 (1927).
[CrossRef]

1926

C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

Allyn, A. C.

A. C. Allyn, J. C. Downey, “Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae),” Bull. Allyn Mus. 42, 1–20 (1977).

A. C. Allyn, J. Downey, “Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae),” Bull. Allyn Mus. 40, 1–6 (1976).

Aneshensley, D.

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Caveney, S.

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London Ser. B 178, 205–225 (1971).
[CrossRef]

A. C. Neville, S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[CrossRef] [PubMed]

Coggeshall, R.

J. Venable, R. Coggeshall, “A simplified lead citrate stain for use in electron microscopy,” J. Cell Biol. 25, 407–408 (1965).
[CrossRef] [PubMed]

Downey, J.

A. C. Allyn, J. Downey, “Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae),” Bull. Allyn Mus. 40, 1–6 (1976).

Downey, J. C.

A. C. Allyn, J. C. Downey, “Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae),” Bull. Allyn Mus. 42, 1–20 (1977).

Eisner, T.

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

T. Eisner, Division of Neurobiology and Behavior; Cornell University, Ithaca, New York 14853 (personal communication).

Gentil, K.

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- and Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

Gere, J.

S. Timoshenko, J. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

Ghiradella, H.

H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202, 69–88 (1989).
[CrossRef]

H. Ghiradella, “Structure and Development of iridescent lepidopteran scales: the papilionidae as a showcase family,” Ann. Entomol. Soc. Am. 78, 252–264 (1986).

H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–645 (1984).

H. Ghiradella, W. Radigan, “Development of butterfly scales. II. Struts, lattices, and surface tension,” J. Morphol. 150, 279–298 (1976).
[CrossRef]

H. Ghiradella, “Development of ultraviolet-reflecting butterfly scales: how to make an interference filter,” J. Morphol. 142, 395–410 (1974).
[CrossRef]

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Greenstein, M. E.

M. E. Greenstein, “The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale forming and socket forming cells,” J. Morphol. 136, 23–52 (1972).
[CrossRef] [PubMed]

Hinton, H. E.

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Huxley, J.

J. Huxley, “The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies,” Proc. R. Soc. London Ser. B 193, 441–453 (1976).
[CrossRef]

Lippert, W.

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- and Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

Locke, M.

M. Locke, “The structure and formation of cuticulin layer in the epicuticle of an insect, Calpodes ethlius (lepidoptera, hesperidae),” J. Morphol. 118, 461–494 (1966).
[CrossRef] [PubMed]

MaGee-Adams, S. M.

J. Nardi, S. M. MaGee-Adams, “Formation of scale spacing patterns in a moth wing. I. epithelial feet may mediate cell rearrangement,” Dev. Biol. 116, 278–290 (1986).
[CrossRef]

Mason, C. W.

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31, 1856–1872 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

Morris, R. B.

R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the green hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
[CrossRef]

Nardi, J.

J. Nardi, S. M. MaGee-Adams, “Formation of scale spacing patterns in a moth wing. I. epithelial feet may mediate cell rearrangement,” Dev. Biol. 116, 278–290 (1986).
[CrossRef]

Neville, A. C.

A. C. Neville, S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[CrossRef] [PubMed]

Overton, J.

J. Overton, “Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kuhniella,” J. Cell Biol. 29, 293–305 (1966).
[CrossRef] [PubMed]

Paulus, H.

K. Schmidt, H. Paulus, “Die Feinstrukturen der Flugelschuppen einiger Lycaeniden (Insecta, Lepidoptera),” Z. Morphol. Tiere 66, 224–241 (1970).
[CrossRef]

Paweletz, N.

N. Paweletz, F. W. Schlote, “Die Entwicklung der Schmetterlingsshuppe bei Ephestia kuhniella Zeller,” Z. Zellforsch. Mikrosk. Anat. 63, 840–870 (1964).
[CrossRef] [PubMed]

Radigan, W.

H. Ghiradella, W. Radigan, “Development of butterfly scales. II. Struts, lattices, and surface tension,” J. Morphol. 150, 279–298 (1976).
[CrossRef]

Schlote, F. W.

N. Paweletz, F. W. Schlote, “Die Entwicklung der Schmetterlingsshuppe bei Ephestia kuhniella Zeller,” Z. Zellforsch. Mikrosk. Anat. 63, 840–870 (1964).
[CrossRef] [PubMed]

Schmidt, K.

K. Schmidt, H. Paulus, “Die Feinstrukturen der Flugelschuppen einiger Lycaeniden (Insecta, Lepidoptera),” Z. Morphol. Tiere 66, 224–241 (1970).
[CrossRef]

Silberglied, R.

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Silberglied, R. E.

R. E. Silberglied, O. R. Taylor, “Ultraviolet differences between the Sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism,” Nature (London) 241, 406–408 (1973).
[CrossRef]

R. E. Silberglied, “Ultraviolet reflection of pierid butterflies: phylogenetic implications and biological significance,” M.S. thesis, Cornell University, Ithaca, N.Y. (1969).

R. E. Silberglied, “Ultraviolet reflection of butterflies and its behavioral role in the genus, Colias (Lepidoptera—Pieridae),” Ph.D. dissertation (Harvard University, Cambridge, Mass., 1973).

Spurr, A.

A. Spurr, “A low viscosity epoxy resin embedding medium for electron microscopy,” J. Ultrastruct. Res. 26, 31–43 (1969).
[CrossRef] [PubMed]

Taylor, O. R.

R. E. Silberglied, O. R. Taylor, “Ultraviolet differences between the Sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism,” Nature (London) 241, 406–408 (1973).
[CrossRef]

Timoshenko, S.

S. Timoshenko, J. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

Venable, J.

J. Venable, R. Coggeshall, “A simplified lead citrate stain for use in electron microscopy,” J. Cell Biol. 25, 407–408 (1965).
[CrossRef] [PubMed]

Ann. Entomol. Soc. Am.

H. Ghiradella, “Structure of iridescent lepidopteran scales: variations on several themes,” Ann. Entomol. Soc. Am. 77, 637–645 (1984).

H. Ghiradella, “Structure and Development of iridescent lepidopteran scales: the papilionidae as a showcase family,” Ann. Entomol. Soc. Am. 78, 252–264 (1986).

Biol. Rev.

A. C. Neville, S. Caveney, “Scarabaeid beetle exocuticle as an optical analogue of cholesteric liquid crystals,” Biol. Rev. 44, 531–562 (1969).
[CrossRef] [PubMed]

Bull. Allyn Mus.

A. C. Allyn, J. Downey, “Diffraction structures in the wing scales of Callophrys (Mitoura) siva siva (Lycaenidae),” Bull. Allyn Mus. 40, 1–6 (1976).

A. C. Allyn, J. C. Downey, “Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae),” Bull. Allyn Mus. 42, 1–20 (1977).

Dev. Biol.

J. Nardi, S. M. MaGee-Adams, “Formation of scale spacing patterns in a moth wing. I. epithelial feet may mediate cell rearrangement,” Dev. Biol. 116, 278–290 (1986).
[CrossRef]

J. Cell Biol.

J. Venable, R. Coggeshall, “A simplified lead citrate stain for use in electron microscopy,” J. Cell Biol. 25, 407–408 (1965).
[CrossRef] [PubMed]

J. Overton, “Microtubules and microfibrils in morphogenesis of the scale cells of Ephestia kuhniella,” J. Cell Biol. 29, 293–305 (1966).
[CrossRef] [PubMed]

J. Entomol. Ser. A

R. B. Morris, “Iridescence from diffraction structures in the wing scales of Callophrys rubi, the green hairstreak,” J. Entomol. Ser. A 49, 149–154 (1975).
[CrossRef]

J. Morphol.

H. Ghiradella, W. Radigan, “Development of butterfly scales. II. Struts, lattices, and surface tension,” J. Morphol. 150, 279–298 (1976).
[CrossRef]

M. E. Greenstein, “The ultrastructure of developing wings in the giant silkmoth, Hyalophora cecropia. II. Scale forming and socket forming cells,” J. Morphol. 136, 23–52 (1972).
[CrossRef] [PubMed]

H. Ghiradella, “Development of ultraviolet-reflecting butterfly scales: how to make an interference filter,” J. Morphol. 142, 395–410 (1974).
[CrossRef]

H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202, 69–88 (1989).
[CrossRef]

M. Locke, “The structure and formation of cuticulin layer in the epicuticle of an insect, Calpodes ethlius (lepidoptera, hesperidae),” J. Morphol. 118, 461–494 (1966).
[CrossRef] [PubMed]

J. Phys. Chem.

C. W. Mason, “Structural colors in insects. I,” J. Phys. Chem. 30, 383–395 (1926).
[CrossRef]

C. W. Mason, “Structural colors in insects. II,” J. Phys. Chem. 31, 321–354 (1927).
[CrossRef]

C. W. Mason, “Structural colors in insects. III,” J. Phys. Chem. 31, 1856–1872 (1927).
[CrossRef]

J. Ultrastruct. Res.

A. Spurr, “A low viscosity epoxy resin embedding medium for electron microscopy,” J. Ultrastruct. Res. 26, 31–43 (1969).
[CrossRef] [PubMed]

Nature (London)

R. E. Silberglied, O. R. Taylor, “Ultraviolet differences between the Sulfur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism,” Nature (London) 241, 406–408 (1973).
[CrossRef]

Proc. R. Soc. London Ser. B

S. Caveney, “Cuticle reflectivity and optical activity in scarab beetles: the role of uric acid,” Proc. R. Soc. London Ser. B 178, 205–225 (1971).
[CrossRef]

J. Huxley, “The coloration of Papilio zalmoxis and P. antimachus and the discovery of Tyndall blue in butterflies,” Proc. R. Soc. London Ser. B 193, 441–453 (1976).
[CrossRef]

Science

H. Ghiradella, D. Aneshensley, T. Eisner, R. Silberglied, H. E. Hinton, “Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales,” Science 178, 1214–1217 (1972).
[CrossRef] [PubMed]

Z. Morphol. Oekol. Tiere

W. Lippert, K. Gentil, “Über lamellare Feinstrukturen bei den Schillerschuppen der Schmetterlinge vom Urania- and Morpho-typ,” Z. Morphol. Oekol. Tiere 48, 115–122 (1959).
[CrossRef]

Z. Morphol. Tiere

K. Schmidt, H. Paulus, “Die Feinstrukturen der Flugelschuppen einiger Lycaeniden (Insecta, Lepidoptera),” Z. Morphol. Tiere 66, 224–241 (1970).
[CrossRef]

Z. Zellforsch. Mikrosk. Anat.

N. Paweletz, F. W. Schlote, “Die Entwicklung der Schmetterlingsshuppe bei Ephestia kuhniella Zeller,” Z. Zellforsch. Mikrosk. Anat. 63, 840–870 (1964).
[CrossRef] [PubMed]

Other

T. Eisner, Division of Neurobiology and Behavior; Cornell University, Ithaca, New York 14853 (personal communication).

R. E. Silberglied, “Ultraviolet reflection of pierid butterflies: phylogenetic implications and biological significance,” M.S. thesis, Cornell University, Ithaca, N.Y. (1969).

R. E. Silberglied, “Ultraviolet reflection of butterflies and its behavioral role in the genus, Colias (Lepidoptera—Pieridae),” Ph.D. dissertation (Harvard University, Cambridge, Mass., 1973).

S. Timoshenko, J. Gere, Theory of Elastic Stability (McGraw-Hill, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Calliona sp., scanning electron micrograph (SEM) of a wing fragment. The cover scales are long and rounded; some have been removed to show the lobed ground scales. (The bar across one of the latter indicates the plane of the cut in the scale in Fig. 2.) Some of the wing membrane and a scale socket (arrow) are visible at the edges of the piece. The moire effects result from the interaction of the scale ridges (see Figs. 2 ff.) with the raster lines of the SEM sweep. Bar = 100 μm.

Fig. 2
Fig. 2

Zeuxidia amethystis, SEM of part of a scale, fractured across the plane indicated in Fig. 1 to show a typical scale interior (compare Fig. 3). The lower lamina (large asterisks) of the scale is a flat plate and is joined to the more complicated upper lamina by pillarlike trabeculae (T). The upper lamina consists of longitudinal ridges (R) bearing slanted and overlapping lamellae (small asterisks) and joined by transverse cross-ribs (r). Fine microribs may be seen between and perpendicular to the lamellae. Bar = 1 μm.

Fig. 3
Fig. 3

Diagrammatic representation of part of a fractured scale showing the relationship between the lower lamina, trabeculae (T), ridges (R), lamellae (**), ribs (r), and microribs (mr). This view also shows pigment granules (*), not present in all scales.

Fig. 4
Fig. 4

Eryphanis aesacus, SEM view of the upper lamina of an unspecialized ground scale. Although the ridges (R) clearly bear lamellae, only two of these generally overlap at any given place. The microribs (arrows) and cross-ribs (r) are clearly visible. Bar = 1 μm.

Fig. 5
Fig. 5

(a) Zeuxidia amethystis, SEM, part of a ridge-iridescent cover scale. Although the microribs and cross-ribs are essentially standard in form, the ridges are taller than on the unspecialized scales, so that many lamellae overlap to form stacks of thin films. Bar = 1 μm. (b) Colias eurytheme, SEM, part of a ridge-iridescent scale. The section has caught the bottom lamina (**), one cross-rib (r), and six ridges, each bearing the stacked lamellae that form the thin-film interference mirror. Bar = 1 μm.

Fig. 6
Fig. 6

Caligo memnon, SEM of part of a cover scale. On these ridges both the lamellae (asterisks) and the microribs (arrows) form stacks of thin films, slanted in different directions; the scale should be reflective in two directions at once. Bar = 1 μm.

Fig. 7
Fig. 7

Eryphanis aesacus, SEM, view along the ridge of a fractured cover scale. The system has rocked back so that the lamellae (asterisks) are perpendicular to and the microribs (arrows) parallel to the plane of the scale. The microribs are now the reflective elements. The fracture surface also shows trabeculae (T) in the interior of the scale. Bar = 1 μm.

Fig. 8
Fig. 8

Papilio oribazus, SEM of parts of a cover scale (left) and ground scale (right). In this family of butterflies the standard cross-ribs are replaced by a latticework, as seen in the ground scale. On the cover scale the pattern is refined into a series of tubules that scatter light and produce a Tyndall blue color. Bar = 4 μm.

Fig. 9
Fig. 9

Plusia balluca, SEM, part of a ground scale. The ridges are standard but between them, the microribs have extended across so that the windows are essentially eliminated. Bar = 1 μm.

Fig. 10
Fig. 10

Thecla damo, SEM of the distal part of one cover scale (middle) and base of another (bottom). In the former, the ridges appear as longitudinal striations superimposed on a mottled pattern caused by crystallites within the scale. The basal part lacks the crystallites. The line indicates the plane of the fracture of the scale in Fig. 11. Bar = 20 μm.

Fig. 11
Fig. 11

Mitoura grynea, transverse view of a scale fractured across the line indicated in Fig. 10 and rotated 90°. The lattice structure of the crystallites is plainly visible. Bar = 1 μm.

Fig. 12
Fig. 12

(a) Teinopalpus imperialis, longitudinal view of a fractured cover scale. The ridges and the netted cross-ribs are typical of papilionid scales, but the scale interior is filled with a diffraction lattice. Bar = 1 μm. (b) Parides sesostris, transverse section of part of a cover scale. The ridges ride on tall footings above the internal lattice. Bar = 2 μm.

Fig. 13
Fig. 13

(a) Lycaena epixanthe, part of a fractured cover scale showing the internal laminae. It is not known if the dimpling on the surface of the upper lamina has any optical significance. Bar = 0.5 μm. (b) Celastrina ladon, transverse section of a cover scale showing two ridges and the thin-film laminae within the body of the scale. Bar = 0.5 μm.

Fig. 14
Fig. 14

Diagrammatic representation of scale growth on a patch of wing. The nascent A, scales start as small projections above the surface of the wing B, grow longer C, become increasingly spatulate and D, eventually develop ridges, ribs, and internal structures. Redrawn from Nardi and MaGee-Adams.21

Fig. 15
Fig. 15

Diagrammatic view of a scale-forming cell and immediate neighbors (slightly distorted to show all structures in the same plane). All the cells are members of the single epithelial layer making up that surface of the wing. The scale cell (center) puts forth a projection that becomes the scale (compare Fig. 14), while the socket cell (darker cytoplasm) forms the socket into which the scale will fit. The adjacent cells (left, right) make the rest of the wing membrane.

Fig. 16
Fig. 16

Colias eurytheme, transverse section of a part of a developing cover scale. The scale body is filled with ribosomes, mitochondria, and other cellular synthetic machinery. The nascent ridges (R) have lamellae, but the latter are as yet irregular and few in number [compare Fig. 5(b)]. Bar = 0.5 μm.

Fig. 17
Fig. 17

Views of a latex membrane stretched over a 5-cm frame (left) and a 7.5-cm frame (right) and swelled with a drop of xylene. Both swellings buckle sinusoidally, but the frequency of the buckling is higher in the membrane under the higher stress.

Fig. 18
Fig. 18

(a) Celastrina ladon, oblique section of part of a developing cover scale. The scale cell does not fill the entire space; it is secreting extracellular microfibrils that seem to be aggregating into spaced clusters (*) under the ridge (R) and in the lower parts of the interior of the scale. Bar = 0.5 μm. (b) C. ladon, transverse section of parts of two developing cover scales. This is a later state of development, and the cuticular elements have condensed into recognizable laminae between which parts of the cell membrane may be seen (arrows). The cell will soon die back, leaving the cuticular structures behind. Bar = 0.5 μm.

Fig. 19
Fig. 19

Mitoura grynea, transverse section of a developing scale. A crystallite of nascent lattice (left) is being secreted within a scaffolding set up within the cell by the so-called crystallization of the smooth endoplasmic reticulum. Such nascent crystallites serve as nucleation points for the growth of the lattice. Bar = 0.5 μm.

Metrics