Abstract

An optical source simulating the sun at the top of the atmosphere has been constructed and used to obtain retinal burn thresholds in the rhesus monkey for image diameters corresponding to that of the solar disk on the human retina. Powers incident on the cornea and retinal irradiances required to produce threshold lesions are given for exposure times ranging from 1 s to 3 min. The ocular hazards associated with viewing the sun through aircraft window systems are assessed in terms of these data. Also, radiation in the near infrared is shown to be less dangerous than visible light in producing thermal injury to the retina.

© 1973 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Thekaekara, Opt. Spectra 6, 32 (March1972); P. R. Gast, in Handbook of Geophysics and Space Environments (McGraw-Hill, New York1965), Sec. 16.1.
  2. W. J. Geeraets, E. R. Berry, Am. J. Ophthalmol. 66, 15 (July1968).
    [PubMed]
  3. W. T. Ham et al., “Low level radiation exposures to the monkey eye,” Report to the Xerox Corporation (Dept. Biophysics, Health Sciences Div., Virginia Commonwealth University, Richmond, Va., 1970).
  4. T. Kuwabara, “Electron microscopic study of low level radiation exposures to the monkey eye,” Report to the Xerox Corporation (Howe Laboratory of Ophthalmology, Harvard University Medical School, Boston, Mass., July1971).
  5. T. Kuwabara, “Structure of the Retina” (Howe Laboratory of Ophthalmology, Harvard University Medical School, Boston, mass., 1970).
  6. W. T. Ham et al., Am. J. Med. Electronics 2, 308 (Oct.–Dec. 1963).
  7. W. J. Geeraets et al., Med. College Va. Quart. 6, 3 (1970).
  8. E. M. Hatfield, Sight-Saving Rev. 40, 79 (1970).
  9. R. Penner, J. N. McNair, Am. J. Ophthalmol. 61, 1452 (1966).
    [PubMed]
  10. R. W. Young, J. Cell Biol. 49, 303 (1971).
    [CrossRef] [PubMed]
  11. T. Kuwabara, Am. J. Ophthalmol. 70, 187 (1970).
    [PubMed]
  12. M. O. M. Tso, Invest. Ophthalmol., 12, 17 (1973).
    [PubMed]
  13. W. T. Ham et al., Am. J. Ophthalmol. 46, 5 (1958).
  14. T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
    [CrossRef] [PubMed]
  15. E. Friedman, T. Kuwabara, Arch. Ophthalmol. 80, 265 (1968).
    [CrossRef] [PubMed]
  16. W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
    [PubMed]
  17. W. K. Noell, M. C. Demelle, R. Albrecht, Science 172, 72 (1971).
    [CrossRef] [PubMed]

1973 (1)

M. O. M. Tso, Invest. Ophthalmol., 12, 17 (1973).
[PubMed]

1972 (1)

M. P. Thekaekara, Opt. Spectra 6, 32 (March1972); P. R. Gast, in Handbook of Geophysics and Space Environments (McGraw-Hill, New York1965), Sec. 16.1.

1971 (3)

R. W. Young, J. Cell Biol. 49, 303 (1971).
[CrossRef] [PubMed]

T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
[CrossRef] [PubMed]

W. K. Noell, M. C. Demelle, R. Albrecht, Science 172, 72 (1971).
[CrossRef] [PubMed]

1970 (3)

T. Kuwabara, Am. J. Ophthalmol. 70, 187 (1970).
[PubMed]

W. J. Geeraets et al., Med. College Va. Quart. 6, 3 (1970).

E. M. Hatfield, Sight-Saving Rev. 40, 79 (1970).

1968 (2)

W. J. Geeraets, E. R. Berry, Am. J. Ophthalmol. 66, 15 (July1968).
[PubMed]

E. Friedman, T. Kuwabara, Arch. Ophthalmol. 80, 265 (1968).
[CrossRef] [PubMed]

1966 (2)

W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
[PubMed]

R. Penner, J. N. McNair, Am. J. Ophthalmol. 61, 1452 (1966).
[PubMed]

1963 (1)

W. T. Ham et al., Am. J. Med. Electronics 2, 308 (Oct.–Dec. 1963).

1958 (1)

W. T. Ham et al., Am. J. Ophthalmol. 46, 5 (1958).

Albrecht, R.

W. K. Noell, M. C. Demelle, R. Albrecht, Science 172, 72 (1971).
[CrossRef] [PubMed]

Berman, S.

W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
[PubMed]

Berry, E. R.

W. J. Geeraets, E. R. Berry, Am. J. Ophthalmol. 66, 15 (July1968).
[PubMed]

Demelle, M. C.

W. K. Noell, M. C. Demelle, R. Albrecht, Science 172, 72 (1971).
[CrossRef] [PubMed]

Friedman, E.

E. Friedman, T. Kuwabara, Arch. Ophthalmol. 80, 265 (1968).
[CrossRef] [PubMed]

Geeraets, W. J.

W. J. Geeraets et al., Med. College Va. Quart. 6, 3 (1970).

W. J. Geeraets, E. R. Berry, Am. J. Ophthalmol. 66, 15 (July1968).
[PubMed]

Ham, W. T.

W. T. Ham et al., Am. J. Med. Electronics 2, 308 (Oct.–Dec. 1963).

W. T. Ham et al., Am. J. Ophthalmol. 46, 5 (1958).

W. T. Ham et al., “Low level radiation exposures to the monkey eye,” Report to the Xerox Corporation (Dept. Biophysics, Health Sciences Div., Virginia Commonwealth University, Richmond, Va., 1970).

Hatfield, E. M.

E. M. Hatfield, Sight-Saving Rev. 40, 79 (1970).

Kang, B. S.

W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
[PubMed]

Kuwabara, T.

T. Kuwabara, Am. J. Ophthalmol. 70, 187 (1970).
[PubMed]

E. Friedman, T. Kuwabara, Arch. Ophthalmol. 80, 265 (1968).
[CrossRef] [PubMed]

T. Kuwabara, “Electron microscopic study of low level radiation exposures to the monkey eye,” Report to the Xerox Corporation (Howe Laboratory of Ophthalmology, Harvard University Medical School, Boston, Mass., July1971).

T. Kuwabara, “Structure of the Retina” (Howe Laboratory of Ophthalmology, Harvard University Medical School, Boston, mass., 1970).

Mainster, M. A.

T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
[CrossRef] [PubMed]

McNair, J. N.

R. Penner, J. N. McNair, Am. J. Ophthalmol. 61, 1452 (1966).
[PubMed]

Noell, W. K.

W. K. Noell, M. C. Demelle, R. Albrecht, Science 172, 72 (1971).
[CrossRef] [PubMed]

W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
[PubMed]

Penner, R.

R. Penner, J. N. McNair, Am. J. Ophthalmol. 61, 1452 (1966).
[PubMed]

Thekaekara, M. P.

M. P. Thekaekara, Opt. Spectra 6, 32 (March1972); P. R. Gast, in Handbook of Geophysics and Space Environments (McGraw-Hill, New York1965), Sec. 16.1.

Tips, J. H.

T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
[CrossRef] [PubMed]

Tso, M. O. M.

M. O. M. Tso, Invest. Ophthalmol., 12, 17 (1973).
[PubMed]

Walker, V. S.

W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
[PubMed]

White, T. J.

T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
[CrossRef] [PubMed]

Wilson, P. W.

T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
[CrossRef] [PubMed]

Young, R. W.

R. W. Young, J. Cell Biol. 49, 303 (1971).
[CrossRef] [PubMed]

Am. J. Med. Electronics (1)

W. T. Ham et al., Am. J. Med. Electronics 2, 308 (Oct.–Dec. 1963).

Am. J. Ophthalmol. (4)

R. Penner, J. N. McNair, Am. J. Ophthalmol. 61, 1452 (1966).
[PubMed]

W. J. Geeraets, E. R. Berry, Am. J. Ophthalmol. 66, 15 (July1968).
[PubMed]

T. Kuwabara, Am. J. Ophthalmol. 70, 187 (1970).
[PubMed]

W. T. Ham et al., Am. J. Ophthalmol. 46, 5 (1958).

Arch. Ophthalmol. (1)

E. Friedman, T. Kuwabara, Arch. Ophthalmol. 80, 265 (1968).
[CrossRef] [PubMed]

Bull. Math. Biophys. (1)

T. J. White, M. A. Mainster, P. W. Wilson, J. H. Tips, Bull. Math. Biophys. 33, 1 (1971).
[CrossRef] [PubMed]

Invest. Ophthalmol. (2)

M. O. M. Tso, Invest. Ophthalmol., 12, 17 (1973).
[PubMed]

W. K. Noell, V. S. Walker, B. S. Kang, S. Berman, Invest. Ophthalmol. 5, 450 (1966).
[PubMed]

J. Cell Biol. (1)

R. W. Young, J. Cell Biol. 49, 303 (1971).
[CrossRef] [PubMed]

Med. College Va. Quart. (1)

W. J. Geeraets et al., Med. College Va. Quart. 6, 3 (1970).

Opt. Spectra (1)

M. P. Thekaekara, Opt. Spectra 6, 32 (March1972); P. R. Gast, in Handbook of Geophysics and Space Environments (McGraw-Hill, New York1965), Sec. 16.1.

Science (1)

W. K. Noell, M. C. Demelle, R. Albrecht, Science 172, 72 (1971).
[CrossRef] [PubMed]

Sight-Saving Rev. (1)

E. M. Hatfield, Sight-Saving Rev. 40, 79 (1970).

Other (3)

W. T. Ham et al., “Low level radiation exposures to the monkey eye,” Report to the Xerox Corporation (Dept. Biophysics, Health Sciences Div., Virginia Commonwealth University, Richmond, Va., 1970).

T. Kuwabara, “Electron microscopic study of low level radiation exposures to the monkey eye,” Report to the Xerox Corporation (Howe Laboratory of Ophthalmology, Harvard University Medical School, Boston, Mass., July1971).

T. Kuwabara, “Structure of the Retina” (Howe Laboratory of Ophthalmology, Harvard University Medical School, Boston, mass., 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The spectral distribution of the solar spectrum at the top of the atmosphere and at sea level. Relative irradiance is plotted on the ordinate vs wavelength in nanometers on the abscissa.

Fig. 2
Fig. 2

A comparison of transmittance through the ocular media of man, monkey, and rabbit. Transmittance is plotted on the ordinate vs wavelength in nanometers on the abscissa.

Fig. 3
Fig. 3

Comparison of the simulated solar spectrum with the natural solar spectrum at the top of the atmosphere. Relative irradiance is plotted on the ordinate vs wavelength in nanometers on the abscissa.

Fig. 4
Fig. 4

Schematic diagram of the xenon lamp and associated optical system used to produce experimental burns in the mammalian retina.

Fig. 5
Fig. 5

Retinal irradiance (in W cm−2) vs pupillary diameter (in mm) is plotted for exposure to the sun at the top of the atmosphere (taken from Table I). The irradiance required to produce a mimimal lesion for various exposure times is shown by the lines parallel to the x axis as taken from Table III. The intersection of these lines with the curve provides an estimate of the pupillary diameter needed to produce a threshold lesion for a given exposure time.

Fig. 6
Fig. 6

The spectral distribution of the sun at the top of the atmosphere and its spectral distributions after transmission through the open VLT window and after transmission through the ocular media of the human eye are shown. Relative irradiance is plotted along the ordinate vs wavelength in nanometers along the abscissa.

Fig. 7
Fig. 7

Retinal irradiance (in W-cm−2) vs pupil diameter (in mm) when viewing the unattenuated sun at zenith through the open VLT window and through a commercial aircraft window. The threshold burn data taken from Table III are shown as lines horizontal to the abscissa for the appropriate retinal irradiances and exposure times.

Fig. 8
Fig. 8

The spectral distributions of the unattenuated sun at zenith after transmission through the closed VLT window and after transmission through the human ocular media are shown. Relative irradiance is plotted along the ordinate vs wavelength in nanometers along the abscissa.

Fig. 9
Fig. 9

The infrared spectra of the Osram XBO 2500 xenon lamp after transmission through a Jena glass RG-715 (RG-10) filter and after transmission through the human ocular media are shown. Relative irradiance is plotted along the ordinate vs wavelength in nanometers along the abscissa.

Tables (4)

Tables Icon

Table I Retinal Irradiance (W cm−2) vs Pupillary Diameter (mm)a

Tables Icon

Table II Comparison of Retinal Burn Thresholds in Man, Monkey, and Rabbita

Tables Icon

Table III Power Entering Eye or Corresponding Retinal Irradiance Required to Produce Threshold Burn Lesion for Various Exposure Timesa

Tables Icon

Table IV Power at Cornea or Corresponding Retinal Irradiance to Produce Threshold Burn for Exposure Times Ranging from 10 Sec to 180 Seca

Metrics