Abstract

A method for the choice of glasses for a superachromatic system consisting of four lenses in contact with each other is developed. The apparatus required for the application of the method, namely, a space representation of three optical constants of the glasses, is described, and the method is applied to the special case of the selection of glasses for a three-lens superachromat.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Herzberger, N. R. McClure, Appl. Opt. 2, 553 (1963).
    [CrossRef]
  2. N. v.d. W. Lessing, J. Opt. Soc. Amer. 47, 955 (1957).
    [CrossRef]

1963 (1)

1957 (1)

N. v.d. W. Lessing, J. Opt. Soc. Amer. 47, 955 (1957).
[CrossRef]

Herzberger, M.

Lessing, N. v.d. W.

N. v.d. W. Lessing, J. Opt. Soc. Amer. 47, 955 (1957).
[CrossRef]

McClure, N. R.

Appl. Opt. (1)

J. Opt. Soc. Amer. (1)

N. v.d. W. Lessing, J. Opt. Soc. Amer. 47, 955 (1957).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (16)

Equations on this page are rendered with MathJax. Learn more.

K 1 + K 2 + K 3 + K 4 = 1 , K 1 x 1 + K 2 x 2 + K 3 x 3 K 4 x 4 = 0 , K 1 y 1 + K 2 y 2 + K 3 y 3 K 4 y 4 = 0 , K 1 z 1 + K 2 z 2 + K 3 z 3 K 4 z 4 = 0 ,
x = ( N m N r ) / ( N 1 ) ; y = ( N υ N m ) / ( N 1 ) ; z = ( N w N υ ) / ( N 1 ) .
K 1 = Δ 1 / Δ ; K 2 = Δ 2 / Δ ; K 3 = Δ 3 / Δ ; K 4 = Δ 4 / Δ
Δ 1 = | 1 1 1 1 0 x 2 x 3 x 4 0 y 2 y 3 y 4 0 z 2 z 3 z 4 | Δ 2 = | 1 1 1 1 x 1 0 x 3 x 4 y 1 0 y 3 y 4 z 1 0 z 3 z 4 | ; Δ 3 = | 1 1 1 1 x 1 x 2 0 x 4 y 1 y 2 0 y 4 z 1 z 2 0 z 4 | ; Δ 4 = | 1 1 1 1 x 1 x 2 x 3 0 y 1 y 2 y 3 0 z 1 z 2 z 3 0 | ; Δ = | 1 1 1 1 x 1 x 2 x 3 x 4 y 1 y 2 y 3 y 4 z 1 z 2 z 3 z 4 | .
K 1 = p 1 / q 1 ; K 2 = p 2 / q 2 ; K 3 = p 3 / q 3 ; K 4 = p 4 / q 4 ,
PKS 1 : N 1 = 1.52242 ; x 1 = 0.012500 ; y 1 = 0.014222 ; z 1 = 0.024367 , KzFS 4 : N 2 = 1.62319 ; x 2 = 0.017571 ; y 2 = 0.022417 ; z 2 = 0.042315 , BaSF 2 : N 3 = 1.67756 ; x 3 = 0.019349 ; y 3 = 0.027333 ; z 3 = 0.055346 ,
K 1 = + 4.4912 ; K 2 = 6.4181 ; K 3 = + 2.9269 , K 1 = + 4.4992 ; K 2 = 6.4488 ; K 3 = + 2.9496 ,
K 1 = + 4.5318 ; K 2 = 6.5264 ; K 3 = + 2.9945 ,
K 1 = + 4.5074 ; K 2 = 6.4644 ; K 3 = + 2.9570 ,
Σ K = 1.0000 ; Σ K x = 0.000028 ; Σ K y = + 0.000015 ; Σ K z = 0.000051.
PKS 1 : N 1 = 1.52242 ; x 1 = 0.012500 ; y 1 = 0.014222 ; z 1 = 0.024367 , KzFS 4 : N 2 = 1.62319 ; x 2 = 0.017571 ; y 2 = 0.022417 ; z 2 = 0.042315 , BaSF 12 : N 3 = 1.68204 ; x 3 = 0.018122 ; y 3 = 0.025057 ; z 3 = 0.049704 ,
K 1 = + 3.8363 ; K 2 = 6.2535 ; K 3 = + 3.4172.
FK 5 : N 1 = 1.49230 ; x 1 = 0.012675 ; y 1 = 0.014138 ; z 1 = 0.023949 , KzFS 4 : N 2 = 1.62319 ; x 2 = 0.017571 ; y 2 = 0.022417 ; z 2 = 0.042315 , BaSF 12 : N 3 = 1.68204 ; x 3 = 0.018122 ; y 3 = 0.025057 ; z 3 = 0.049704 ,
K 1 = + 4.0694 ; K 2 = 7.3399 ; K 3 = + 4.2704.
PKS 1 : N 1 = 1.52242 ; x 1 = 0.012500 ; y 1 = 0.014222 ; z 1 = 0.024367 , LaF 3 : N 2 = 1.72745 ; x 2 = 0.016413 ; y 2 = 0.020579 ; z 2 = 0.038009 , BaF 4 : N 3 = 1.61531 ; x 3 = 0.016610 ; y 3 = 0.022411 ; z 3 = 0.043116 ,
K 1 = + 4.3972 ; K 2 = 7.4221 ; K 3 = + 4.0249.

Metrics