Abstract

Liquid thermometry during primary and secondary breakup of liquid sprays is challenging due to the presence of highly dynamic, optically complex flow features. This work evaluates the use of x-ray scattering from a focused, monochromatic beam of the Advanced Photon Source at Argonne National Laboratory for the measurement of liquid temperatures within the mixing zone of an impinging jet spray. The measured scattering profiles are converted to temperature through a previously developed two-component partial least squares (PLS) regression model. Transmitive mixing during jet merging is inferred through spatial mapping of temperatures within the impingement region. The technique exhibits uncertainties of $\pm {2}\;{\rm K}$ in temperature and 2% in capturing the correct scattering profile, showing its potential utility for probing liquid temperature distributions in multiphase flows.

© 2021 Optical Society of America

Full Article  |  PDF Article
More Like This
High-speed, two-dimensional synchrotron white-beam x-ray radiography of spray breakup and atomization

Benjamin R. Halls, Christopher D. Radke, Benjamin J. Reuter, Alan L. Kastengren, James R. Gord, and Terrence R. Meyer
Opt. Express 25(2) 1605-1617 (2017)

Thermometry in aqueous solutions and sprays using two-color LIF and structured illumination

Yogeshwar Nath Mishra, Fahed Abou Nada, Stephanie Polster, Elias Kristensson, and Edouard Berrocal
Opt. Express 24(5) 4949-4963 (2016)

Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry

C. Taber Wanstall, Ajay K. Agrawal, and Joshua A. Bittle
Appl. Opt. 56(30) 8385-8393 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Data Availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription