Abstract

A method that significantly increases the detection efficiency of filter array-based spectral sensors is proposed. The basic concept involves a wavelength-dependent redistribution of incident light before it reaches the filter elements located in front of the detector. Due to this redistribution, each filter element of the array receives a spatially concentrated amount of a pre-selected and adjusted spectral partition of the entire incident light. This approach can be employed to significantly reduce the reflection and absorption losses of each filter element. The proof-of-concept is demonstrated by a setup that combines a series of consecutively arranged dichroic filters with Fabry–Perot filter arrays. Experimentally, an efficiency increase by a factor larger than 4 compared to a reference system is demonstrated. The optical system is a non-imaging spectrometer, which combines the efficiency enhancement module with the filter arrays, is compact (${17.5}\;{\rm mm} \times {17.5}\;{\rm mm} \times {7.8}\;{\rm mm}$), and integrated completely inside the CCD camera mount.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Realization of a compact cross-grating spectrometer and validating experimental tests

Matthias Kraus, Erik Förster, Verena Bagusat, Tobias Hönle, Xavier Uwurukundo, Patrick Bohnert, Robert Brüning, Hartmut Hillmer, and Robert Brunner
Appl. Opt. 59(5) 1338-1346 (2020)

Multichannel tunable narrowband mid-infrared optical filter based on phase-change material Ge2Sb2Te5 defect layers

Kun Zhou, Qiang Cheng, Lu Lu, Bowen Li, Jinlin Song, Mengting Si, and Zixue Luo
Appl. Opt. 59(3) 595-600 (2020)

Dielectric metalens-based Hartmann–Shack array for a high-efficiency optical multiparameter detection system

Yuxi Wang, Zhaokun Wang, Xing Feng, Ming Zhao, Cheng Zeng, Guangqiang He, Zhenyu Yang, Yu Zheng, and Jinsong Xia
Photon. Res. 8(4) 482-489 (2020)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Burns and E. W. Ciurczak, eds., Handbook of Near-Infrared Analysis (CRC Press, 2007).
  2. C. A. Roberts, J. Workman, and J. B. Reeves, eds., Near-Infrared Spectroscopy in Agriculture (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2004), Vol. 44.
  3. E. W. Ciurczak and B. Igne, Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy (CRC Press, 2014).
  4. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
    [Crossref]
  5. Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosystems Eng. 177, 90–100 (2019).
    [Crossref]
  6. G. Downey, ed., Advances in Food Authenticity Testing (Woodhead Publishing, 2016).
  7. (2019) https://www.zeiss.com/spectroscopy/products/spectrometer-modules/monolithic-miniature-spectrometer-mms.html .
  8. (2019), https://www.insion.de/ .
  9. (2019) https://www.hamamatsu.com/resources/pdf/news/2018_10_23_en.pdf .
  10. J. Reader, “Optimizing Czerny–Turner spectrographs: a comparison between analytic theory and ray tracing,” J. Opt. Soc. Am. 59, 1189–1196 (1969).
    [Crossref]
  11. T. Eversberg and K. Vollmann, “Fundamentals of echelle spectroscopy,” in Spectroscopic Instrumentation: Fundamentals and Guidelines for Astronomers (Springer, 2015), pp. 193–227.
  12. D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism free Czerny–Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48, 3846–3853 (2009).
    [Crossref]
  13. K.-S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
    [Crossref]
  14. X. Fu, F. Duan, J. Jiang, T. Huang, L. Ma, and C. Lv, “Astigmatism-corrected echelle spectrometer using an off-the-shelf cylindrical lens,” Appl. Opt. 56, 7861–7868 (2017).
    [Crossref]
  15. D. Thomae, T. Hönle, M. Kraus, V. Bagusat, A. Deparnay, R. Brüning, and R. Brunner, “Compact echelle spectrometer employing a cross-grating,” Appl. Opt. 57, 7109–7116 (2018).
    [Crossref]
  16. V. Bagusat, M. Kraus, E. Förster, D. Thomae, T. Hönle, R. Brüning, H. Hillmer, and R. Brunner, “Concept and optical design of a compact cross-grating spectrometer,” J. Opt. Soc. Am. A 36, 345–352 (2019).
    [Crossref]
  17. J. Shi, B. Sheng, Y.-S. Huang, L.-N. Peng, L.-Y. Wang, Z.-J. Ni, D.-W. Zhang, Y.-F. Zhao, and M. He, “Multifacet echelle grating for intensity broadening on spectral plane fabricated by rotating ion-beam etching,” Appl. Opt. 58, 5040–5044 (2019).
    [Crossref]
  18. Q. Liu, J. Wu, and M. Chen, “Fabrication of blazed grating by native substrate grating mask,” Opt. Eng. 52, 091706 (2013).
    [Crossref]
  19. Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24, 11677–11682 (2016).
    [Crossref]
  20. S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
    [Crossref]
  21. D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
    [Crossref]
  22. I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
    [Crossref]
  23. X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
    [Crossref]
  24. Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
    [Crossref]
  25. S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
    [Crossref]
  26. T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
    [Crossref]
  27. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
    [Crossref]
  28. J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
    [Crossref]
  29. A. Emadi, H. Wu, G. de Graaf, and R. Wolffenbuttel, “Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter,” Opt. Express 20, 489–507 (2012).
    [Crossref]
  30. P. Murr, M. Schardt, and A. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors 13, 12687–12697 (2013).
    [Crossref]
  31. (2019) https://physics.nist.gov/PhysRefData/ASD/lines_form.html .

2019 (3)

2018 (2)

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

D. Thomae, T. Hönle, M. Kraus, V. Bagusat, A. Deparnay, R. Brüning, and R. Brunner, “Compact echelle spectrometer employing a cross-grating,” Appl. Opt. 57, 7109–7116 (2018).
[Crossref]

2017 (1)

2016 (3)

Y. Horie, A. Arbabi, E. Arbabi, S. M. Kamali, and A. Faraon, “Wide bandwidth and high resolution planar filter array based on DBR-metasurface-DBR structures,” Opt. Express 24, 11677–11682 (2016).
[Crossref]

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

2015 (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

2013 (3)

P. Murr, M. Schardt, and A. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors 13, 12687–12697 (2013).
[Crossref]

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Q. Liu, J. Wu, and M. Chen, “Fabrication of blazed grating by native substrate grating mask,” Opt. Eng. 52, 091706 (2013).
[Crossref]

2012 (2)

2011 (1)

S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
[Crossref]

2010 (2)

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
[Crossref]

K.-S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny–Turner spectrometer,” Opt. Express 18, 23378–23384 (2010).
[Crossref]

2009 (1)

2007 (1)

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

2006 (1)

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

1969 (1)

Ababtain, M.

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

Albrecht, A.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Arbabi, A.

Arbabi, E.

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Austin, D. R.

Bagusat, V.

Bao, J.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Bartels, M.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Bawendi, M. G.

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Brüning, R.

Brunner, R.

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Chen, M.

Q. Liu, J. Wu, and M. Chen, “Fabrication of blazed grating by native substrate grating mask,” Opt. Eng. 52, 091706 (2013).
[Crossref]

Chen, X. S.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Ciurczak, E. W.

E. W. Ciurczak and B. Igne, Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy (CRC Press, 2014).

de Graaf, G.

Deparnay, A.

Duan, F.

Emadi, A.

Eversberg, T.

T. Eversberg and K. Vollmann, “Fundamentals of echelle spectroscopy,” in Spectroscopic Instrumentation: Fundamentals and Guidelines for Astronomers (Springer, 2015), pp. 193–227.

Faraon, A.

Förster, E.

Fu, X.

Guo, L. J.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
[Crossref]

He, M.

Hillmer, H.

V. Bagusat, M. Kraus, E. Förster, D. Thomae, T. Hönle, R. Brüning, H. Hillmer, and R. Brunner, “Concept and optical design of a compact cross-grating spectrometer,” J. Opt. Soc. Am. A 36, 345–352 (2019).
[Crossref]

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Hönle, T.

Horie, Y.

Hornung, M.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Huang, T.

Huang, Y.-S.

Igne, B.

E. W. Ciurczak and B. Igne, Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy (CRC Press, 2014).

Istock, A.

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

Janik, L. J.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

Jiang, J.

Junger, S.

S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
[Crossref]

Kamali, S. M.

Khan, A.

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

Koch, A.

P. Murr, M. Schardt, and A. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors 13, 12687–12697 (2013).
[Crossref]

Kraus, M.

Lee, K.-S.

Lehmann, P.

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

Li, M.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Liu, Q.

Q. Liu, J. Wu, and M. Chen, “Fabrication of blazed grating by native substrate grating mask,” Opt. Eng. 52, 091706 (2013).
[Crossref]

Lu, W.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Luo, X.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
[Crossref]

Lv, C.

Ma, L.

Mai, H. H.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

McBratney, A. B.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

Meinl, T.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Memon, I.

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

Mouazen, A. M.

Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosystems Eng. 177, 90–100 (2019).
[Crossref]

Murr, P.

P. Murr, M. Schardt, and A. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors 13, 12687–12697 (2013).
[Crossref]

Nguyen, D. T.

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

Ni, Z.-J.

Peng, L.-N.

Reader, J.

Rolland, J. P.

Schardt, M.

P. Murr, M. Schardt, and A. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors 13, 12687–12697 (2013).
[Crossref]

Shen, Y.

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

Sheng, B.

Shi, J.

Skjemstad, J. O.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

Tekin, Y.

Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosystems Eng. 177, 90–100 (2019).
[Crossref]

Thomae, D.

Thompson, K. P.

Tschekalinskij, W.

S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
[Crossref]

Tümsavas, Z.

Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosystems Eng. 177, 90–100 (2019).
[Crossref]

Ullah, A.

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

Ulusoy, Y.

Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosystems Eng. 177, 90–100 (2019).
[Crossref]

Verwaal, N.

S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
[Crossref]

Viscarra Rossel, R. A.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

Vollmann, K.

T. Eversberg and K. Vollmann, “Fundamentals of echelle spectroscopy,” in Spectroscopic Instrumentation: Fundamentals and Guidelines for Astronomers (Springer, 2015), pp. 193–227.

Walmsley, I. A.

Walvoort, D. J. J.

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

Wang, H. Q.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Wang, L.-Y.

Wang, S. W.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Wang, X.

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Weber, N.

S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
[Crossref]

Witting, T.

Woidt, C.

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Wolffenbuttel, R.

Wu, H.

Wu, J.

Q. Liu, J. Wu, and M. Chen, “Fabrication of blazed grating by native substrate grating mask,” Opt. Eng. 52, 091706 (2013).
[Crossref]

Wu, Y. K.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
[Crossref]

Xia, C. S.

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Xie, W.

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

Xu, T.

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
[Crossref]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Zaman, A.

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

Zhang, D.-W.

Zhao, Y.-F.

Appl. Nanosci. (3)

D. T. Nguyen, M. Ababtain, I. Memon, A. Ullah, A. Istock, C. Woidt, W. Xie, P. Lehmann, and H. Hillmer, “3D nanoimprint for NIR Fabry–Pérot filter arrays: fabrication, characterization and comparison of different cavity designs,” Appl. Nanosci. 6, 1127–1135 (2016).
[Crossref]

I. Memon, Y. Shen, A. Khan, C. Woidt, and H. Hillmer, “Highly uniform residual layers for arrays of 3D nanoimprinted cavities in Fabry–Pérot-filter-array-based nanospectrometers,” Appl. Nanosci. 6, 599–606 (2016).
[Crossref]

Y. Shen, A. Istock, A. Zaman, C. Woidt, and H. Hillmer, “Fabrication and characterization of multi-stopband Fabry–Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology,” Appl. Nanosci. 8, 1415–1425 (2018).
[Crossref]

Appl. Opt. (4)

Appl. Phys. B (1)

S. W. Wang, M. Li, C. S. Xia, H. Q. Wang, X. S. Chen, and W. Lu, “128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique,” Appl. Phys. B 88, 281–284 (2007).
[Crossref]

Biosystems Eng. (1)

Z. Tümsavaş, Y. Tekin, Y. Ulusoy, and A. M. Mouazen, “Prediction and mapping of soil clay and sand contents using visible and near-infrared spectroscopy,” Biosystems Eng. 177, 90–100 (2019).
[Crossref]

Geoderma (1)

R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, “Visible, near-infrared, mid-infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties,” Geoderma 131, 59–75 (2006).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Microelectron. Eng. (1)

X. Wang, A. Albrecht, H. H. Mai, C. Woidt, T. Meinl, M. Hornung, M. Bartels, and H. Hillmer, “High resolution 3D NanoImprint technology: template fabrication, application in Fabry–Perot-filter-array-based optical nanospectrometers,” Microelectron. Eng. 110, 44–51 (2013).
[Crossref]

Nano Lett. (1)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12, 4349–4354 (2012).
[Crossref]

Nat. Commun. (1)

T. Xu, Y. K. Wu, X. Luo, and L. J. Guo, ”Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,“ Nat. Commun. 1, 59 (2010).
[Crossref]

Nature (1)

J. Bao and M. G. Bawendi, “A colloidal quantum dot spectrometer,” Nature 523, 67–70 (2015).
[Crossref]

Opt. Eng. (1)

Q. Liu, J. Wu, and M. Chen, “Fabrication of blazed grating by native substrate grating mask,” Opt. Eng. 52, 091706 (2013).
[Crossref]

Opt. Express (3)

Proc. SPIE (1)

S. Junger, W. Tschekalinskij, N. Verwaal, and N. Weber, “On-chip nanostructures for polarization imaging and multispectral sensing using dedicated layers of modified CMOS processes,” Proc. SPIE 7946, 79461D (2011).
[Crossref]

Sensors (1)

P. Murr, M. Schardt, and A. Koch, “Static hyperspectral fluorescence imaging of viscous materials based on a linear variable filter spectrometer,” Sensors 13, 12687–12697 (2013).
[Crossref]

Other (9)

(2019) https://physics.nist.gov/PhysRefData/ASD/lines_form.html .

T. Eversberg and K. Vollmann, “Fundamentals of echelle spectroscopy,” in Spectroscopic Instrumentation: Fundamentals and Guidelines for Astronomers (Springer, 2015), pp. 193–227.

D. A. Burns and E. W. Ciurczak, eds., Handbook of Near-Infrared Analysis (CRC Press, 2007).

C. A. Roberts, J. Workman, and J. B. Reeves, eds., Near-Infrared Spectroscopy in Agriculture (American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, 2004), Vol. 44.

E. W. Ciurczak and B. Igne, Pharmaceutical and Medical Applications of Near-Infrared Spectroscopy (CRC Press, 2014).

G. Downey, ed., Advances in Food Authenticity Testing (Woodhead Publishing, 2016).

(2019) https://www.zeiss.com/spectroscopy/products/spectrometer-modules/monolithic-miniature-spectrometer-mms.html .

(2019), https://www.insion.de/ .

(2019) https://www.hamamatsu.com/resources/pdf/news/2018_10_23_en.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic comparison of the spatial light distribution in filter array-based spectral sensors. (a) Conventional setup; (b) basic concept for efficiency enhancement; left side: detection principle in overview, right side: local conditions at a selected single filter element. (a) Each filter pixel receives the whole spectrum but only a narrow spectral line is detected and most of the incident light is lost. (b) Incident light is spatially and spectrally redistributed across the filter array by a primary optical module. Each filter element receives an accumulated, pre-selected spectral partition of the entire incident light.
Fig. 2.
Fig. 2. Some possible concepts for the spectral redistribution based on the use of dichroic filters. (a) Setup based on cascaded Köster prisms and dichroic filters on specific facets. (b) Configuration employing a series of consecutively arranged tilted dichroic mirrors.
Fig. 3.
Fig. 3. Fabry–Perot (FP) filter arrays and their experimental spectral characteristics [24]. (a) Photograph of a single columnar element with three filter arrays. (b) Schematic representation of three neighboring columns comprising individual filter arrays. Each column is tailored for a specific spectral bandwidth. (c) Matrix representation of the peak maximum wavelength of the transmission curves for the filter pitches of the central filter array. (d) Measured transmissions curves for the filter pitches of the central filter array. The full width of half-maximum (FWHM) of the individual transmission filter lines has an average of 3 nm.
Fig. 4.
Fig. 4. Model for the (a) setup, (b) implemented efficiency enhancement module, and (c) reference system. (a) 3D representation showing the integrated deflection mirror, dichroic mirrors for wavelength separation, and the filter arrays. (b) Cross section of the efficiency enhancement module. The given values are indicating the transmission and reflection characteristics of the individual filters. (c) Cross section of the reference module providing a uniform distribution of the incoming light across the filter arrays.
Fig. 5.
Fig. 5. Photographs of the manufactured efficiency enhancement module. (a) Efficiency module integrated in a mounting for the adaption to a detector. The deflection mirror and the dichroic mirrors are clearly visible. For size comparison a Euro-cent coin is shown. (b) Closed module with entrance aperture. (c) Back side of the module, showing the filter arrays.
Fig. 6.
Fig. 6. Experimental verification of the efficiency enhancement method. (a) Schema of the experimental setup. (b) Photograph of the spectral sensor with the incorporated efficiency enhancement module and the entrance aperture at the front side adapted to the CCD camera. The highly compact module is integrated completely inside the mount of the camera.
Fig. 7.
Fig. 7. Measurement results. (a) Section of the recorded CCD camera image when the efficiency module is illuminated with three spectral lines or double lines, respectively. The separated filter arrays are clearly visible. (b)–(d) Detailed view of the lateral intensity distributions of the three individual filter arrays in a 3D representation. Due to the characteristics of the filter pitches of the array several elements transmit the incident light. (b) Representation for the 644 nm line, (c) 577–579 nm double line, and (d) 546 nm line.
Fig. 8.
Fig. 8. Measured data for all three spectral lines or double lines and for both spectral detection configurations. Displayed is the measured intensity as a function of the exposure time for all three wavelengths. The efficiency enhancement method shows an average efficiency increase of a factor of $ {\gt} {4}$ compared to the reference system.

Metrics