Abstract

Magnetorheological jet polishing (MJP) plays an important role in polishing complex cavities and special optical elements with high precision. However, the roughness distribution function that describes the variation with polishing time of the roughness value of every area in the polishing area has not been studied deeply. In this paper, the influence of the roughness distribution on the removal function of MJP in optics (with a roughness of less than 10 nm) and its evolution model in the spatial and time domains are studied. With the increase of polishing time, the surface roughness of the central area linearly increases, forming surface defects, such as pits. The roughness of the polishing area exhibits a limited growth trend. Verification experiments are carried out on BK7 glass. The results of the roughness distribution on the removal function prove the correctness of the model. The model laid a foundation; therefore, it has important guidance and reference value for the application to the whole aperture polishing.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mathematic models and material removal characteristics of multigesture jetting using magnetorheological fluid

Tan Wang, Haobo Cheng, and Honyuen Tam
Appl. Opt. 53(32) 7804-7813 (2014)

Surface roughness and material removal in fluid jet polishing

Hui Fang, Peiji Guo, and Jingchi Yu
Appl. Opt. 45(17) 4012-4019 (2006)

Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model

Tan Wang, Haobo Cheng, Hao Yang, Wentao Wu, and Honyuen Tam
Appl. Opt. 54(21) 6433-6440 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
    [Crossref]
  2. J. Seoka and Y. J. Kim, “A study on the fabrication of curved surfaces using magnetorheological fluid finishing,” Int. J. Mach. Tools Manuf. 47, 2077–2090 (2007).
    [Crossref]
  3. M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
    [Crossref]
  4. W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
    [Crossref]
  5. W. I. Kordonski, D. Golini, S. Hogan, and A. Sekeres, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. patentUS5971835A (October 26, 1999).
  6. W. I. Kordonski, “Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid,” U.S. patentUS6561874 B1 (May 13, 2003).
  7. W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
    [Crossref]
  8. K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf. 46, 1778–1785 (2006).
    [Crossref]
  9. H. Wang, S. To, and C. Y. Chan, “Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 69, 20–29 (2013).
    [Crossref]
  10. W. Jingsi, Z. Jiaqi, and J. L. Pay, “Material removal in ultrasonic abrasive polishing of additive manufactured components,” Appl. Sci. 9, 5359 (2019).
    [Crossref]
  11. N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
    [Crossref]
  12. T. Wang, H. Cheng, and H. Tam, “Mathematic models and material removal characteristics of multigesture jetting using magnetorheological fluid,” Appl. Opt. 53, 7804–7813 (2014).
    [Crossref]
  13. T. Wang, H. Cheng, H. Yang, W. Wu, and H. Tam, “Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model,” Appl. Opt. 54, 6433 (2015).
    [Crossref]
  14. Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
    [Crossref]
  15. T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
    [Crossref]
  16. H. Yang, H. Cheng, Y. Feng, and X. Jing, “Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing,” Appl. Opt. 57, 3377–3384 (2018).
    [Crossref]
  17. J. R. Haj Mohammad, J. K. Spelt, and M. Papini, “Surface roughness and erosion rate of abrasive jet micro-machined channels: experiments and analytical model,” Wear 303, 138–145 (2013).
    [Crossref]
  18. D. Dehnadfar, J. Friedman, and M. Papini, “Laser shadowgraphy measurements of abrasive particle spatial, size and velocity distributions through micro-masks used in abrasive jet micro-machining,” J. Mater. Process. Technol. 212, 137–149 (2012).
    [Crossref]
  19. T. Burzynski and M. Papini, “Analytical model of particle interference effects in divergent erosive jets,” Tribol. Int. 43, 554–567 (2010).
    [Crossref]
  20. T. Burzynski and M. Papini, “Measurement of the particle spatial and velocity distributions in micro-abrasive jets,” Measur. Sci. Technol. 22, 025104 (2011).
    [Crossref]
  21. S. Melle and J. E. Martin, “Chain model of a magnetorheological suspension in a rotating field,” J. Chem. Phys. 118, 9875–9881 (2003).
    [Crossref]
  22. H. Yang, H. Cheng, H. Wu, and T. Wang, “Electromagnetic optimization of the integrated magnetorheological jet polishing tool and its application in millimeter-scale discontinuous structure processing,” Appl. Opt. 56, 3162–3170 (2017).
    [Crossref]
  23. Z. Zhang and C. Kleinstreuer, “Low Reynolds number turbulent flows in locally constricted conduits,” AIAA J. 41, 831–840 (2003).
    [Crossref]
  24. Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
    [Crossref]
  25. H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
    [Crossref]
  26. C. Y. Shi, J. H. Yuan, and F. Wu, “Analysis of parameters in fluid jet polishing by CFD,” Proc. SPIE 7282, 72821Y (2009).
    [Crossref]
  27. F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
    [Crossref]
  28. A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
    [Crossref]
  29. S. K. Paswan, T. S. Bedi, and A. K. Singh, “Modeling and simulation of surface roughness in magnetorheological fluid based honing process,” Wear 376-377, 1207–1221 (2017).
    [Crossref]
  30. S. Jha and Z. Alam, “Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process,” Wear 376-377, 194–202 (2017).
    [Crossref]
  31. E. Ness and R. Zibbell, “Abrasion and erosion of hard materials related to wear in the abrasive waterjet,” Wear 196, 120–125 (1996).
    [Crossref]
  32. S. M. Booij, “Fluid jet polishing: possibilities and limitations of a new fabrication technique, Ph.D. Thesis (Technical University of Delft Netherlands, 2003).
  33. P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
    [Crossref]
  34. M. Buijs and J. M. M. Pasmans, “Erosion of glass by alumina particles: transitions and exponents,” Wear 184, 61–65 (1995).
    [Crossref]
  35. T. Panitz and D. T. Wasan, “Flow attachment to solid surfaces: the Coanda effect,” AIChE J. 18, 51–57 (1972).
    [Crossref]

2019 (1)

W. Jingsi, Z. Jiaqi, and J. L. Pay, “Material removal in ultrasonic abrasive polishing of additive manufactured components,” Appl. Sci. 9, 5359 (2019).
[Crossref]

2018 (1)

2017 (3)

H. Yang, H. Cheng, H. Wu, and T. Wang, “Electromagnetic optimization of the integrated magnetorheological jet polishing tool and its application in millimeter-scale discontinuous structure processing,” Appl. Opt. 56, 3162–3170 (2017).
[Crossref]

S. K. Paswan, T. S. Bedi, and A. K. Singh, “Modeling and simulation of surface roughness in magnetorheological fluid based honing process,” Wear 376-377, 1207–1221 (2017).
[Crossref]

S. Jha and Z. Alam, “Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process,” Wear 376-377, 194–202 (2017).
[Crossref]

2015 (2)

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

T. Wang, H. Cheng, H. Yang, W. Wu, and H. Tam, “Controlling mid-spatial frequency errors in magnetorheological jet polishing with a simple vertical model,” Appl. Opt. 54, 6433 (2015).
[Crossref]

2014 (1)

2013 (3)

H. Wang, S. To, and C. Y. Chan, “Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 69, 20–29 (2013).
[Crossref]

J. R. Haj Mohammad, J. K. Spelt, and M. Papini, “Surface roughness and erosion rate of abrasive jet micro-machined channels: experiments and analytical model,” Wear 303, 138–145 (2013).
[Crossref]

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[Crossref]

2012 (1)

D. Dehnadfar, J. Friedman, and M. Papini, “Laser shadowgraphy measurements of abrasive particle spatial, size and velocity distributions through micro-masks used in abrasive jet micro-machining,” J. Mater. Process. Technol. 212, 137–149 (2012).
[Crossref]

2011 (1)

T. Burzynski and M. Papini, “Measurement of the particle spatial and velocity distributions in micro-abrasive jets,” Measur. Sci. Technol. 22, 025104 (2011).
[Crossref]

2010 (2)

Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
[Crossref]

T. Burzynski and M. Papini, “Analytical model of particle interference effects in divergent erosive jets,” Tribol. Int. 43, 554–567 (2010).
[Crossref]

2009 (1)

C. Y. Shi, J. H. Yuan, and F. Wu, “Analysis of parameters in fluid jet polishing by CFD,” Proc. SPIE 7282, 72821Y (2009).
[Crossref]

2007 (4)

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[Crossref]

J. Seoka and Y. J. Kim, “A study on the fabrication of curved surfaces using magnetorheological fluid finishing,” Int. J. Mach. Tools Manuf. 47, 2077–2090 (2007).
[Crossref]

J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
[Crossref]

Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
[Crossref]

2006 (2)

M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
[Crossref]

K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf. 46, 1778–1785 (2006).
[Crossref]

2004 (2)

H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
[Crossref]

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

2003 (2)

Z. Zhang and C. Kleinstreuer, “Low Reynolds number turbulent flows in locally constricted conduits,” AIAA J. 41, 831–840 (2003).
[Crossref]

S. Melle and J. E. Martin, “Chain model of a magnetorheological suspension in a rotating field,” J. Chem. Phys. 118, 9875–9881 (2003).
[Crossref]

2001 (1)

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

1998 (1)

P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
[Crossref]

1996 (1)

E. Ness and R. Zibbell, “Abrasion and erosion of hard materials related to wear in the abrasive waterjet,” Wear 196, 120–125 (1996).
[Crossref]

1995 (1)

M. Buijs and J. M. M. Pasmans, “Erosion of glass by alumina particles: transitions and exponents,” Wear 184, 61–65 (1995).
[Crossref]

1991 (1)

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

1972 (1)

T. Panitz and D. T. Wasan, “Flow attachment to solid surfaces: the Coanda effect,” AIChE J. 18, 51–57 (1972).
[Crossref]

Aachen, T. H.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Alam, Z.

S. Jha and Z. Alam, “Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process,” Wear 376-377, 194–202 (2017).
[Crossref]

Bedi, T. S.

S. K. Paswan, T. S. Bedi, and A. K. Singh, “Modeling and simulation of surface roughness in magnetorheological fluid based honing process,” Wear 376-377, 1207–1221 (2017).
[Crossref]

Bigl, F.

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Boehm, G.

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Booij, S. M.

S. M. Booij, “Fluid jet polishing: possibilities and limitations of a new fabrication technique, Ph.D. Thesis (Technical University of Delft Netherlands, 2003).

Bouten, P. C. P.

P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
[Crossref]

Brown, R. J.

H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
[Crossref]

Buijs, M.

M. Buijs and J. M. M. Pasmans, “Erosion of glass by alumina particles: transitions and exponents,” Wear 184, 61–65 (1995).
[Crossref]

Burzynski, T.

T. Burzynski and M. Papini, “Measurement of the particle spatial and velocity distributions in micro-abrasive jets,” Measur. Sci. Technol. 22, 025104 (2011).
[Crossref]

T. Burzynski and M. Papini, “Analytical model of particle interference effects in divergent erosive jets,” Tribol. Int. 43, 554–567 (2010).
[Crossref]

Chan, C. Y.

H. Wang, S. To, and C. Y. Chan, “Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 69, 20–29 (2013).
[Crossref]

Cheng, H.

Cheng, H. B.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[Crossref]

Choi, D.-S.

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

Dehnadfar, D.

D. Dehnadfar, J. Friedman, and M. Papini, “Laser shadowgraphy measurements of abrasive particle spatial, size and velocity distributions through micro-masks used in abrasive jet micro-machining,” J. Mater. Process. Technol. 212, 137–149 (2012).
[Crossref]

Donaldson, R. R.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Dong, Z. C.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[Crossref]

Evans, C.

M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
[Crossref]

Fechner, R.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Feng, Y.

Flamm, D.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Frank, W.

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Friedman, J.

D. Dehnadfar, J. Friedman, and M. Papini, “Laser shadowgraphy measurements of abrasive particle spatial, size and velocity distributions through micro-masks used in abrasive jet micro-machining,” J. Mater. Process. Technol. 212, 137–149 (2012).
[Crossref]

Frost, F.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Golini, D.

W. I. Kordonski, D. Golini, S. Hogan, and A. Sekeres, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. patentUS5971835A (October 26, 1999).

Haensel, T.

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Haj Mohammad, J. R.

J. R. Haj Mohammad, J. K. Spelt, and M. Papini, “Surface roughness and erosion rate of abrasive jet micro-machined channels: experiments and analytical model,” Wear 303, 138–145 (2013).
[Crossref]

Hogan, S.

W. I. Kordonski, D. Golini, S. Hogan, and A. Sekeres, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. patentUS5971835A (October 26, 1999).

Ikawa, N.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Je, T.-J.

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

Jeon, E.-C.

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

Jha, S.

S. Jha and Z. Alam, “Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process,” Wear 376-377, 194–202 (2017).
[Crossref]

Jiaqi, Z.

W. Jingsi, Z. Jiaqi, and J. L. Pay, “Material removal in ultrasonic abrasive polishing of additive manufactured components,” Appl. Sci. 9, 5359 (2019).
[Crossref]

Jing, X.

Jingsi, W.

W. Jingsi, Z. Jiaqi, and J. L. Pay, “Material removal in ultrasonic abrasive polishing of additive manufactured components,” Appl. Sci. 9, 5359 (2019).
[Crossref]

Kelson, N.

H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
[Crossref]

Kim, W.-B.

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

Kim, Y. J.

J. Seoka and Y. J. Kim, “A study on the fabrication of curved surfaces using magnetorheological fluid finishing,” Int. J. Mach. Tools Manuf. 47, 2077–2090 (2007).
[Crossref]

Kleinstreuer, C.

Z. Zhang and C. Kleinstreuer, “Low Reynolds number turbulent flows in locally constricted conduits,” AIAA J. 41, 831–840 (2003).
[Crossref]

Komanduri, R.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

König, W.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Kordonski, W.

J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
[Crossref]

Kordonski, W. I.

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[Crossref]

M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
[Crossref]

W. I. Kordonski, D. Golini, S. Hogan, and A. Sekeres, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. patentUS5971835A (October 26, 1999).

W. I. Kordonski, “Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid,” U.S. patentUS6561874 B1 (May 13, 2003).

Liu, H.

H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
[Crossref]

Liu, K.

K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf. 46, 1778–1785 (2006).
[Crossref]

Liu, X.

Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
[Crossref]

Martin, J. E.

S. Melle and J. E. Martin, “Chain model of a magnetorheological suspension in a rotating field,” J. Chem. Phys. 118, 9875–9881 (2003).
[Crossref]

McKeown, P. A.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Melkote, S. N.

K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf. 46, 1778–1785 (2006).
[Crossref]

Melle, S.

S. Melle and J. E. Martin, “Chain model of a magnetorheological suspension in a rotating field,” J. Chem. Phys. 118, 9875–9881 (2003).
[Crossref]

Meng, H.

Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
[Crossref]

Min, B.-K.

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

Moriwaki, T.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Nam, E.

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

Ness, E.

E. Ness and R. Zibbell, “Abrasion and erosion of hard materials related to wear in the abrasive waterjet,” Wear 196, 120–125 (1996).
[Crossref]

Panitz, T.

T. Panitz and D. T. Wasan, “Flow attachment to solid surfaces: the Coanda effect,” AIChE J. 18, 51–57 (1972).
[Crossref]

Papini, M.

J. R. Haj Mohammad, J. K. Spelt, and M. Papini, “Surface roughness and erosion rate of abrasive jet micro-machined channels: experiments and analytical model,” Wear 303, 138–145 (2013).
[Crossref]

D. Dehnadfar, J. Friedman, and M. Papini, “Laser shadowgraphy measurements of abrasive particle spatial, size and velocity distributions through micro-masks used in abrasive jet micro-machining,” J. Mater. Process. Technol. 212, 137–149 (2012).
[Crossref]

T. Burzynski and M. Papini, “Measurement of the particle spatial and velocity distributions in micro-abrasive jets,” Measur. Sci. Technol. 22, 025104 (2011).
[Crossref]

T. Burzynski and M. Papini, “Analytical model of particle interference effects in divergent erosive jets,” Tribol. Int. 43, 554–567 (2010).
[Crossref]

Pasmans, J. M. M.

M. Buijs and J. M. M. Pasmans, “Erosion of glass by alumina particles: transitions and exponents,” Wear 184, 61–65 (1995).
[Crossref]

Paswan, S. K.

S. K. Paswan, T. S. Bedi, and A. K. Singh, “Modeling and simulation of surface roughness in magnetorheological fluid based honing process,” Wear 376-377, 1207–1221 (2017).
[Crossref]

Pay, J. L.

W. Jingsi, Z. Jiaqi, and J. L. Pay, “Material removal in ultrasonic abrasive polishing of additive manufactured components,” Appl. Sci. 9, 5359 (2019).
[Crossref]

Rauschenbach, B.

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Schindler, A.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Scholten, H.

P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
[Crossref]

Sekeres, A.

W. I. Kordonski, D. Golini, S. Hogan, and A. Sekeres, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. patentUS5971835A (October 26, 1999).

Seoka, J.

J. Seoka and Y. J. Kim, “A study on the fabrication of curved surfaces using magnetorheological fluid finishing,” Int. J. Mach. Tools Manuf. 47, 2077–2090 (2007).
[Crossref]

Shengyi, L.

Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
[Crossref]

Shi, C. Y.

C. Y. Shi, J. H. Yuan, and F. Wu, “Analysis of parameters in fluid jet polishing by CFD,” Proc. SPIE 7282, 72821Y (2009).
[Crossref]

Shorey, A.

J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
[Crossref]

Shorey, A. B.

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[Crossref]

M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
[Crossref]

Singh, A. K.

S. K. Paswan, T. S. Bedi, and A. K. Singh, “Modeling and simulation of surface roughness in magnetorheological fluid based honing process,” Wear 376-377, 1207–1221 (2017).
[Crossref]

Slikkerveer, P. J.

P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
[Crossref]

Spelt, J. K.

J. R. Haj Mohammad, J. K. Spelt, and M. Papini, “Surface roughness and erosion rate of abrasive jet micro-machined channels: experiments and analytical model,” Wear 303, 138–145 (2013).
[Crossref]

Stowers, I. F.

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

Tam, H.

Tam, H. Y.

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[Crossref]

To, S.

H. Wang, S. To, and C. Y. Chan, “Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 69, 20–29 (2013).
[Crossref]

Tracy, J.

J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
[Crossref]

Tricard, M.

J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
[Crossref]

M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
[Crossref]

Veld, F. H.

P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
[Crossref]

Wang, H.

H. Wang, S. To, and C. Y. Chan, “Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 69, 20–29 (2013).
[Crossref]

Wang, J.

H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
[Crossref]

Wang, T.

Wasan, D. T.

T. Panitz and D. T. Wasan, “Flow attachment to solid surfaces: the Coanda effect,” AIChE J. 18, 51–57 (1972).
[Crossref]

Wu, F.

C. Y. Shi, J. H. Yuan, and F. Wu, “Analysis of parameters in fluid jet polishing by CFD,” Proc. SPIE 7282, 72821Y (2009).
[Crossref]

Wu, H.

Wu, J.

Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
[Crossref]

Wu, W.

Xiaoqiang, P.

Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
[Crossref]

Xuecheng, Z.

Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
[Crossref]

Yang, H.

Yifan, D.

Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
[Crossref]

Yu, Y.

Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
[Crossref]

Yuan, J. H.

C. Y. Shi, J. H. Yuan, and F. Wu, “Analysis of parameters in fluid jet polishing by CFD,” Proc. SPIE 7282, 72821Y (2009).
[Crossref]

Zhang, Z.

Z. Zhang and C. Kleinstreuer, “Low Reynolds number turbulent flows in locally constricted conduits,” AIAA J. 41, 831–840 (2003).
[Crossref]

Zibbell, R.

E. Ness and R. Zibbell, “Abrasion and erosion of hard materials related to wear in the abrasive waterjet,” Wear 196, 120–125 (1996).
[Crossref]

Ziberi, B.

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

AIAA J. (1)

Z. Zhang and C. Kleinstreuer, “Low Reynolds number turbulent flows in locally constricted conduits,” AIAA J. 41, 831–840 (2003).
[Crossref]

AIChE J. (1)

T. Panitz and D. T. Wasan, “Flow attachment to solid surfaces: the Coanda effect,” AIChE J. 18, 51–57 (1972).
[Crossref]

Appl. Mech. Mater. (1)

Y. Yu, X. Liu, J. Wu, and H. Meng, “Comparison among turbulence models for a novel static circulating jet mixer,” Appl. Mech. Mater. 28, 382–385 (2010).
[Crossref]

Appl. Opt. (4)

Appl. Sci. (1)

W. Jingsi, Z. Jiaqi, and J. L. Pay, “Material removal in ultrasonic abrasive polishing of additive manufactured components,” Appl. Sci. 9, 5359 (2019).
[Crossref]

CIRP Ann. (2)

N. Ikawa, R. R. Donaldson, R. Komanduri, W. König, T. H. Aachen, P. A. McKeown, T. Moriwaki, and I. F. Stowers, “Ultraprecision metal cutting—the past, the present and the future,” CIRP Ann. 40, 587–594 (1991).
[Crossref]

M. Tricard, W. I. Kordonski, A. B. Shorey, and C. Evans, “Magnetorheological jet finishing of conformal, freeform and steep concave optics,” CIRP Ann. 55, 309–312 (2006).
[Crossref]

Int. J. Mach. Tools Manuf. (3)

J. Seoka and Y. J. Kim, “A study on the fabrication of curved surfaces using magnetorheological fluid finishing,” Int. J. Mach. Tools Manuf. 47, 2077–2090 (2007).
[Crossref]

K. Liu and S. N. Melkote, “Effect of plastic side flow on surface roughness in micro-turning process,” Int. J. Mach. Tools Manuf. 46, 1778–1785 (2006).
[Crossref]

H. Wang, S. To, and C. Y. Chan, “Investigation on the influence of tool-tip vibration on surface roughness and its representative measurement in ultra-precision diamond turning,” Int. J. Mach. Tools Manuf. 69, 20–29 (2013).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

W.-B. Kim, E. Nam, B.-K. Min, D.-S. Choi, T.-J. Je, and E.-C. Jeon, “Material removal of glass by magnetorheological fluid jet,” Int. J. Precis. Eng. Manuf. 16, 629–637 (2015).
[Crossref]

J. Chem. Phys. (1)

S. Melle and J. E. Martin, “Chain model of a magnetorheological suspension in a rotating field,” J. Chem. Phys. 118, 9875–9881 (2003).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

W. I. Kordonski and A. B. Shorey, “Magnetorheological (MR) jet finishing technology,” J. Intell. Mater. Syst. Struct. 18, 1127–1130 (2007).
[Crossref]

J. Mater. Process. Technol. (3)

T. Wang, H. B. Cheng, Z. C. Dong, and H. Y. Tam, “Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid,” J. Mater. Process. Technol. 213, 1532–1537 (2013).
[Crossref]

D. Dehnadfar, J. Friedman, and M. Papini, “Laser shadowgraphy measurements of abrasive particle spatial, size and velocity distributions through micro-masks used in abrasive jet micro-machining,” J. Mater. Process. Technol. 212, 137–149 (2012).
[Crossref]

H. Liu, J. Wang, N. Kelson, and R. J. Brown, “A study of abrasive waterjet characteristics by CFD simulation,” J. Mater. Process. Technol. 153, 488–493 (2004).
[Crossref]

Measur. Sci. Technol. (1)

T. Burzynski and M. Papini, “Measurement of the particle spatial and velocity distributions in micro-abrasive jets,” Measur. Sci. Technol. 22, 025104 (2011).
[Crossref]

Proc. SPIE (4)

C. Y. Shi, J. H. Yuan, and F. Wu, “Analysis of parameters in fluid jet polishing by CFD,” Proc. SPIE 7282, 72821Y (2009).
[Crossref]

A. Schindler, T. Haensel, D. Flamm, W. Frank, G. Boehm, F. Frost, R. Fechner, F. Bigl, and B. Rauschenbach, “Ion beam and plasma jet etching for optical component fabrication,” Proc. SPIE 4440, 217–227 (2001).
[Crossref]

Z. Xuecheng, D. Yifan, L. Shengyi, and P. Xiaoqiang, “Optimization of removal function for magnetorheological jet polishing,” Proc. SPIE 6722, 67221Y (2007).
[Crossref]

J. Tracy, W. Kordonski, A. Shorey, and M. Tricard, “Advances in finishing using magnetorheological (MR) jet technology,” Proc. SPIE 10316, 103160F (2007).
[Crossref]

Thin Solid Films (1)

F. Frost, R. Fechner, B. Ziberi, D. Flamm, and A. Schindler, “Large area smoothing of optical surfaces by low-energy ion beams,” Thin Solid Films 459, 100–105 (2004).
[Crossref]

Tribol. Int. (1)

T. Burzynski and M. Papini, “Analytical model of particle interference effects in divergent erosive jets,” Tribol. Int. 43, 554–567 (2010).
[Crossref]

Wear (6)

S. K. Paswan, T. S. Bedi, and A. K. Singh, “Modeling and simulation of surface roughness in magnetorheological fluid based honing process,” Wear 376-377, 1207–1221 (2017).
[Crossref]

S. Jha and Z. Alam, “Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process,” Wear 376-377, 194–202 (2017).
[Crossref]

E. Ness and R. Zibbell, “Abrasion and erosion of hard materials related to wear in the abrasive waterjet,” Wear 196, 120–125 (1996).
[Crossref]

P. J. Slikkerveer, P. C. P. Bouten, F. H. Veld, and H. Scholten, “Erosion and damage by sharp particles,” Wear 217, 237–250 (1998).
[Crossref]

M. Buijs and J. M. M. Pasmans, “Erosion of glass by alumina particles: transitions and exponents,” Wear 184, 61–65 (1995).
[Crossref]

J. R. Haj Mohammad, J. K. Spelt, and M. Papini, “Surface roughness and erosion rate of abrasive jet micro-machined channels: experiments and analytical model,” Wear 303, 138–145 (2013).
[Crossref]

Other (3)

W. I. Kordonski, D. Golini, S. Hogan, and A. Sekeres, “System for abrasive jet shaping and polishing of a surface using magnetorheological fluid,” U.S. patentUS5971835A (October 26, 1999).

W. I. Kordonski, “Apparatus and method for abrasive jet finishing of deeply concave surfaces using magnetorheological fluid,” U.S. patentUS6561874 B1 (May 13, 2003).

S. M. Booij, “Fluid jet polishing: possibilities and limitations of a new fabrication technique, Ph.D. Thesis (Technical University of Delft Netherlands, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. Simulation of the MR jet flow process by CFD.
Fig. 2.
Fig. 2. Simulation results of velocity and pressure distribution.
Fig. 3.
Fig. 3. Axial approximate normalized velocity and pressure simulation curve.
Fig. 4.
Fig. 4. Division of the action area between the fluid and workpiece.
Fig. 5.
Fig. 5. Material removal process in fluid impacting.
Fig. 6.
Fig. 6. Material removal model of the polishing area.
Fig. 7.
Fig. 7. Simulation of a rough surface between a fluid and the rough surface of (a) abrasive velocity, (b) pressure, and (c) abrasive wall shear.
Fig. 8.
Fig. 8. Roughness distribution model over time.
Fig. 9.
Fig. 9. (a) Fluid flow simulation with a width of 5 mm at a certain time, and (b) the effect of fluid jet width on the roughness distribution model.
Fig. 10.
Fig. 10. MJP system with the robot; (a) photograph and (b) sketch.
Fig. 11.
Fig. 11. Test result of the removal function on BK7 glass.
Fig. 12.
Fig. 12. Results of the experiment and simulation at different areas.
Fig. 13.
Fig. 13. Roughness distribution results in fixed point polishing for 30 min and 60 min, and different roughness from area A to area F.
Fig. 14.
Fig. 14. Polishing and Impacting area Ra value with time.
Fig. 15.
Fig. 15. Phase line of roughness in polishing area.

Tables (3)

Tables Icon

Table 1. Parameters of the Polishing Process

Tables Icon

Table 2. Polishing Time with the MJP Tool at Different Fixed Points

Tables Icon

Table 3. Polishing Time with MJP Tool in a Single Point

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dR dt = k p v = k F μ S v = k τ v μ ,
ν T = k ω ,
k t + U j k x j = τ ij U i x j β k ω + x j [ ( ν + σ ν T ) k x j ] ,
ω t + U j ω x j = α ω k τ ij U i x j β ω 2 + x j [ ( ν + σ ν T ) ω x j ] ,
P c r = 2 × 10 5 ( K IC 4 / H N 3 ) ,
R a 0.63 4 ( 3 2 π ) 1 / 3 ( E H ) 1 / 2 ( U H ) 1 / 3 ,
Δ R a ( i ) = C 1 p ( x , y ) Δ t ,
Δ R a ( s ) = C 2 p ( x , y ) v ( x , y ) R a ( t ) Δ t ,
Δ R a = Δ R a ( i ) + Δ R a ( s ) = C 1 p Δ t C 2 p v R a ( t ) Δ t ,
d R a C 1 p C 2 p v R a ( t ) = d t ,
R a ( x , y , t ) = { C 1 e C 2 p ( x , y ) v ( x , y ) ( t + C 3 ) C 2 v ( x , y ) , o t h e r s R a ( x , y , t 0 ) + C 1 t , a t p o i n t , ( 0 , 0 ) ,
C 3 = ln ( C 1 C 2 R a ( x , y , t 0 ) v ( x , y ) ) C 2 v ( x , y ) .
R a ( x , t 1 ) = R a ( x , t 1 ) r e c t ( x / a ) ,
R a ( 0 , 0 , t ) = 0.349 + 0.169 t ,