Abstract

In this paper, we present a theoretical model based on the nonlinear Schrödinger equation to characterize GHz-range passively mode-locked fiber lasers. The modeled cavities of the lasers are configured by a highly doped and polarization-maintaining single fiber of a single type. For different pulse repetition rates, ranging from 1.0 to 10.0 GHz, gain parameters and pump threshold for a stable mode-locked laser emission are studied. Pulse time width, spectral width, and semiconductor saturable absorber mirror (SESAM) properties are defined to achieve stable emission. To experimentally validate our theoretical model, 1.0 and 2.2 GHz laser cavities have been built up and amplified. A stable and robust operation for both frequencies was obtained, and the experimental measurements have been found to match the theoretical predictions. Finally, enhanced environmental stability has been achieved using a cavity temperature control system and an antivibration enclosure.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
    [Crossref]
  2. F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.
  3. T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033–1041 (2002).
    [Crossref]
  4. X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic highly-stable femtosecond fiber lasers for applications in biophotonics,” IEEE J. Sel. Top. Quantum Electron 18, 1439–1450 (2012).
    [Crossref]
  5. J. R. Unruh, E. S. Price, R. G. Molla, L. Stehno-Bittel, C. K. Johnson, and R. Q. Huii, “Two-photon microscopy with wavelength switchable fiber laser excitation,” Opt. Express 14, 9825–9831 (2006).
    [Crossref]
  6. Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
    [Crossref]
  7. M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
    [Crossref]
  8. A. E. H. Oehler, S. C. Zeller, K. J. Weingarten, and U. Keller, “Broad multiwavelength source with 50 GHz channel spacing for wavelength division multiplexing applications in the telecom C band,” Opt. Lett. 33, 2158–2160 (2008).
    [Crossref]
  9. D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
    [Crossref]
  10. R. A. Lawton and J. R. Andrews, “Optically strobed sampling oscilloscopes,” IEEE Trans. Instrum. Meas. 1, 56–60 (1976).
    [Crossref]
  11. A. J. Low and J. E. Carroll, “10  ps optoelectronic sampling systems,” Solid State Electron Devices 2, 185–190 (1978).
    [Crossref]
  12. F. J. Leonberger and P. Moulton, “High-speed InP optoelectronic switch,” Appl. Phys. Lett. 35, 712–714 (1979).
    [Crossref]
  13. C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
    [Crossref]
  14. F. J. Leonberger and V. Diadiuk, “High-speed InP-based photodetectors,” in International Electron Devices Meeting (1983), pp. 460–463.
  15. H. Byun, M. Y. Sander, A. Motamedi, H. Shen, G. S. Petrich, L. A. Kolodziejski, E. P. Ippen, and F. X. Kärtner, “Compact, stable 1  GHz femtosecond Er-doped fiber lasers,” Appl. Opt. 49, 5577–5582 (2010).
    [Crossref]
  16. A. Martinez and S. Yamashita, “Multi-gigahertz repetition rate passively modelocked fiber lasers using carbon nanotubes,” Opt. Express 19, 6155–6163 (2011).
    [Crossref]
  17. G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorbers,” Laser Phys. Lett. 9, 581–586 (2012).
    [Crossref]
  18. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 1st ed. (CRC Press, 2001).
  19. W. He, M. Pang, and P. S. Russel, “Wideband-tunable soliton fiber laser mode-locked at 1.88  GHz by optoacoustic interactions in solid-core PCF,” Opt. Express 23, 24945–24954 (2015).
    [Crossref]
  20. R. Thapa, D. Nguyen, J. Zong, and A. Chavez-Pirson, “All-fiber fundamentally mode-locked 12  GHz laser oscillator based on an Er/Yb-doped phosphate glass fiber,” Opt. Lett. 39, 1418–1421 (2014).
    [Crossref]
  21. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
    [Crossref]
  22. L. R. Brovelli and U. Keller, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
    [Crossref]
  23. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
    [Crossref]
  24. F. X. Kätner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
    [Crossref]
  25. J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
    [Crossref]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  27. M. Brotons-Gisbert, G. Villanueva, J. Abreu-Afonso, G. Serafino, A. Bogoni, M. Andrés, and P. Pérez-Millán, “Comprehensive theoretical and experimental study of short- and long-term stability in a passively mode-locked solitonic fiber laser,” J. Lightwave Technol. 33, 4039–4049 (2015).
    [Crossref]
  28. N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
    [Crossref]
  29. G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode-locked fiber lasers for high-speed high-resolution photonic analog to digital conversion,” IEEE J. Quantum Electron. 48, 1443–1452 (2012).
    [Crossref]
  30. A. Mayer, C. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8, 1–8 (2017).
    [Crossref]
  31. J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
    [Crossref]

2017 (1)

A. Mayer, C. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

2015 (3)

2014 (1)

2012 (3)

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic highly-stable femtosecond fiber lasers for applications in biophotonics,” IEEE J. Sel. Top. Quantum Electron 18, 1439–1450 (2012).
[Crossref]

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode-locked fiber lasers for high-speed high-resolution photonic analog to digital conversion,” IEEE J. Quantum Electron. 48, 1443–1452 (2012).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorbers,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

2007 (2)

Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
[Crossref]

G. C. Valley, “Photonic analog-to-digital converters,” Opt. Express 15, 1955–1982 (2007).
[Crossref]

2006 (1)

2005 (1)

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

2002 (2)

J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
[Crossref]

T. Gherman and D. Romanini, “Mode-locked cavity-enhanced absorption spectroscopy,” Opt. Express 10, 1033–1041 (2002).
[Crossref]

2001 (1)

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

1999 (1)

1998 (1)

F. X. Kätner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

1995 (1)

1993 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

1983 (1)

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

1979 (1)

F. J. Leonberger and P. Moulton, “High-speed InP optoelectronic switch,” Appl. Phys. Lett. 35, 712–714 (1979).
[Crossref]

1978 (1)

A. J. Low and J. E. Carroll, “10  ps optoelectronic sampling systems,” Solid State Electron Devices 2, 185–190 (1978).
[Crossref]

1976 (1)

R. A. Lawton and J. R. Andrews, “Optically strobed sampling oscilloscopes,” IEEE Trans. Instrum. Meas. 1, 56–60 (1976).
[Crossref]

1975 (1)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[Crossref]

Abramski, K. M.

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorbers,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Abreu-Afonso, J.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Andrés, M.

Andrews, J. R.

R. A. Lawton and J. R. Andrews, “Optically strobed sampling oscilloscopes,” IEEE Trans. Instrum. Meas. 1, 56–60 (1976).
[Crossref]

Auston, D. H.

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[Crossref]

Bogoni, A.

M. Brotons-Gisbert, G. Villanueva, J. Abreu-Afonso, G. Serafino, A. Bogoni, M. Andrés, and P. Pérez-Millán, “Comprehensive theoretical and experimental study of short- and long-term stability in a passively mode-locked solitonic fiber laser,” J. Lightwave Technol. 33, 4039–4049 (2015).
[Crossref]

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.

Braun, B.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Brotons-Gisbert, M.

Brovelli, L. R.

Bubnov, M. M.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Byun, H.

Carroll, J. E.

A. J. Low and J. E. Carroll, “10  ps optoelectronic sampling systems,” Solid State Electron Devices 2, 185–190 (1978).
[Crossref]

Chavez-Pirson, A.

Chiang, A. C.

Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
[Crossref]

Cox, C. H.

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

der Au, J. A.

F. X. Kätner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Diadiuk, V.

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

F. J. Leonberger and V. Diadiuk, “High-speed InP-based photodetectors,” in International Electron Devices Meeting (1983), pp. 460–463.

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 1st ed. (CRC Press, 2001).

Domingo, J. M. S.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Ebendorff-Heidepriem, H.

J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
[Crossref]

Ehrt, R. D.

J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
[Crossref]

Ferri, M.

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode-locked fiber lasers for high-speed high-resolution photonic analog to digital conversion,” IEEE J. Quantum Electron. 48, 1443–1452 (2012).
[Crossref]

Fluck, R.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Ghelfi, P.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.

Gherman, T.

Guryanov, A. N.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

He, W.

Heras, C. D.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Hönninger, C.

Huang, Y. C.

Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
[Crossref]

Huii, R. Q.

Inagaki, K.

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

Ippen, E. P.

Johnson, C. K.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Kärtner, F. X.

Kätner, F. X.

F. X. Kätner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

Keller, U.

A. Mayer, C. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

A. E. H. Oehler, S. C. Zeller, K. J. Weingarten, and U. Keller, “Broad multiwavelength source with 50 GHz channel spacing for wavelength division multiplexing applications in the telecom C band,” Opt. Lett. 33, 2158–2160 (2008).
[Crossref]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B 16, 46–56 (1999).
[Crossref]

F. X. Kätner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

L. R. Brovelli and U. Keller, “Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311–322 (1995).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Kiritchenko, N. V.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Kolodziejski, L. A.

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Kotov, L. V.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Lægsgaard, J.

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic highly-stable femtosecond fiber lasers for applications in biophotonics,” IEEE J. Sel. Top. Quantum Electron 18, 1439–1450 (2012).
[Crossref]

Laghezza, F.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.

Laptev, A. Y.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Lawton, R. A.

R. A. Lawton and J. R. Andrews, “Optically strobed sampling oscilloscopes,” IEEE Trans. Instrum. Meas. 1, 56–60 (1976).
[Crossref]

Lee, Y. M.

Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
[Crossref]

Leonberger, F. J.

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

F. J. Leonberger and P. Moulton, “High-speed InP optoelectronic switch,” Appl. Phys. Lett. 35, 712–714 (1979).
[Crossref]

F. J. Leonberger and V. Diadiuk, “High-speed InP-based photodetectors,” in International Electron Devices Meeting (1983), pp. 460–463.

Likhachev, M. E.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Liu, X.

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic highly-stable femtosecond fiber lasers for applications in biophotonics,” IEEE J. Sel. Top. Quantum Electron 18, 1439–1450 (2012).
[Crossref]

Low, A. J.

A. J. Low and J. E. Carroll, “10  ps optoelectronic sampling systems,” Solid State Electron Devices 2, 185–190 (1978).
[Crossref]

Martinez, A.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Mayer, A.

A. Mayer, C. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Melkumov, M. A.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Molla, R. G.

Morier-Genoud, F.

Moser, M.

Motamedi, A.

Moulton, P.

F. J. Leonberger and P. Moulton, “High-speed InP optoelectronic switch,” Appl. Phys. Lett. 35, 712–714 (1979).
[Crossref]

Nguyen, D.

Oehler, A. E. H.

Ogura, I.

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

Ogusu, M.

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

Ohira, T.

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

Pang, M.

Paschotta, R.

Pelayo, J.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Pellejer, E.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Pérez-Millán, P.

M. Brotons-Gisbert, G. Villanueva, J. Abreu-Afonso, G. Serafino, A. Bogoni, M. Andrés, and P. Pérez-Millán, “Comprehensive theoretical and experimental study of short- and long-term stability in a passively mode-locked solitonic fiber laser,” J. Lightwave Technol. 33, 4039–4049 (2015).
[Crossref]

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode-locked fiber lasers for high-speed high-resolution photonic analog to digital conversion,” IEEE J. Quantum Electron. 48, 1443–1452 (2012).
[Crossref]

Petrich, G. S.

Philipps, J.

J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
[Crossref]

Phillips, C.

A. Mayer, C. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Pina, S.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.

Price, E. S.

Romanini, D.

Russel, P. S.

Sander, M. Y.

Scotti, F.

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.

Serafino, G.

Shen, H.

Sobon, G.

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorbers,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Sotor, J.

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorbers,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Stehno-Bittel, L.

Thapa, R.

Töpfer, T.

J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
[Crossref]

Tu, R. Y.

Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
[Crossref]

Turchinovich, D.

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic highly-stable femtosecond fiber lasers for applications in biophotonics,” IEEE J. Sel. Top. Quantum Electron 18, 1439–1450 (2012).
[Crossref]

Unruh, J. R.

Valley, G. C.

Villanueva, G.

Villanueva, G. E.

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode-locked fiber lasers for high-speed high-resolution photonic analog to digital conversion,” IEEE J. Quantum Electron. 48, 1443–1452 (2012).
[Crossref]

Villuendas, F.

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

Weingarten, K. J.

A. E. H. Oehler, S. C. Zeller, K. J. Weingarten, and U. Keller, “Broad multiwavelength source with 50 GHz channel spacing for wavelength division multiplexing applications in the telecom C band,” Opt. Lett. 33, 2158–2160 (2008).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

Williamson, R. C.

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

Yamashita, S.

Yao, I.

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

Yashkov, M. V.

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Yokoyama, H.

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

Zeller, S. C.

Zong, J.

Appl. Opt. (1)

Appl. Phys. B (1)

J. Philipps, T. Töpfer, H. Ebendorff-Heidepriem, and R. D. Ehrt, “Energy transfer and upconversion in erbium–ytterbium doped fluoride phosphate glasses,” Appl. Phys. B 74, 233–236 (2002).
[Crossref]

Appl. Phys. Lett. (2)

D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101–103 (1975).
[Crossref]

F. J. Leonberger and P. Moulton, “High-speed InP optoelectronic switch,” Appl. Phys. Lett. 35, 712–714 (1979).
[Crossref]

Electron. Lett. (1)

M. Ogusu, K. Inagaki, T. Ohira, I. Ogura, and H. Yokoyama, “Wavelength-division multiplexing of two-mode injection-locked Fabry–Perot lasers using optically harmonic modelocked master laser,” Electron. Lett. 37, 889–890 (2001).
[Crossref]

IEEE J. Quantum Electron. (2)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. Der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond and nanosecond pulse generation in solid-state lasers,” IEEE J. Quantum Electron. 2, 435–445 (1993).
[Crossref]

G. E. Villanueva, M. Ferri, and P. Pérez-Millán, “Active and passive mode-locked fiber lasers for high-speed high-resolution photonic analog to digital conversion,” IEEE J. Quantum Electron. 48, 1443–1452 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

X. Liu, J. Lægsgaard, and D. Turchinovich, “Monolithic highly-stable femtosecond fiber lasers for applications in biophotonics,” IEEE J. Sel. Top. Quantum Electron 18, 1439–1450 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. X. Kätner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers–what’s the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. M. S. Domingo, J. Pelayo, F. Villuendas, C. D. Heras, and E. Pellejer, “Very high resolution optical spectrometry by stimulated brillouin scattering,” IEEE Photon. Technol. Lett. 17, 855–857 (2005).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

R. A. Lawton and J. R. Andrews, “Optically strobed sampling oscilloscopes,” IEEE Trans. Instrum. Meas. 1, 56–60 (1976).
[Crossref]

J. Biomed. Opt. (1)

Y. M. Lee, R. Y. Tu, A. C. Chiang, and Y. C. Huang, “Average-power mediated ultrafast laser osteotomy using a mode-locked Nd:YVO4 laser oscillator,” J. Biomed. Opt. 12, 060505 (2007).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Phys. (1)

N. V. Kiritchenko, L. V. Kotov, M. E. Likhachev, M. A. Melkumov, M. M. Bubnov, M. V. Yashkov, A. Y. Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass,” Laser Phys. 25, 025102 (2015).
[Crossref]

Laser Phys. Lett. (1)

G. Sobon, J. Sotor, and K. M. Abramski, “All-polarization maintaining femtosecond Er-doped fiber laser mode-locked by graphene saturable absorbers,” Laser Phys. Lett. 9, 581–586 (2012).
[Crossref]

Nat. Commun. (1)

A. Mayer, C. Phillips, and U. Keller, “Watt-level 10-gigahertz solid-state laser enabled by self-defocusing nonlinearities in an aperiodically poled crystal,” Nat. Commun. 8, 1–8 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

C. H. Cox, V. Diadiuk, I. Yao, F. J. Leonberger, and R. C. Williamson, “InP optoelectronic switches and their high-speed signal-processing applications,” Proc. SPIE 439, 164–168 (1983).
[Crossref]

Solid State Electron Devices (1)

A. J. Low and J. E. Carroll, “10  ps optoelectronic sampling systems,” Solid State Electron Devices 2, 185–190 (1978).
[Crossref]

Other (4)

F. J. Leonberger and V. Diadiuk, “High-speed InP-based photodetectors,” in International Electron Devices Meeting (1983), pp. 460–463.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, 1st ed. (CRC Press, 2001).

F. Laghezza, F. Scotti, P. Ghelfi, A. Bogoni, and S. Pina, “Jitter-limited photonic analog-to-digital converter with 7 effective bits for wideband radar applications,” in IEEE Radar Conference (RadarCon13) (2013), pp. 1–5.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (20)

Fig. 1.
Fig. 1. Oscillator internal structure. PWDM, polarizer wavelength division multiplexer; DM, dichromic mirror; SESAM, semiconductor saturable absorber mirror; PISO, polarizer isolator; PFC, polarizer fiber coupler.
Fig. 2.
Fig. 2. Calculated stable mode-locked pulse formation regime corresponding to the setup described in Fig. 1. (top) 20.8 cm cavity, 1.0 GHz rep. rate; (bottom) 9.6 cm cavity, 2.2 GHz rep. rate.
Fig. 3.
Fig. 3. Calculated mode-locked pulse formation regime for a 1.0 cm cavity. (top) 980 nm pump wavelength, gain conditions and pump power same as those for 1.0 GHz and 2.2 GHz simulations (${\sigma _{\rm{em}}} = 51\;{{\rm pm}^2}$); (bottom) 980 nm pump wavelength, emission cross-section three times higher than in the 1.0 and 2.2 GHz simulations (${\sigma _{\rm{em}}} = 150\;{{\rm pm}^2}$).
Fig. 4.
Fig. 4. Spectral bandwidth after the convergence of the algorithm for different frequencies of the cavity. The threshold power for stable mode-locking emission is represented by a vertical dotted line.
Fig. 5.
Fig. 5. Temporal width (top) and average output power (bottom) as a function of the pump power after the convergence of the algorithm for different frequencies of the cavity.
Fig. 6.
Fig. 6. (top) Blue: temporal width for different frequencies when the cavity average power output is 500 µW. Green: measured temporal width after the amplification stage. (bottom) Spectral width for different frequencies when the cavity average power output is 500 µW.
Fig. 7.
Fig. 7. Autocorrelation traces measured using a Femtochrome FR-103XL autocorrelator. (top) For the 1.0 GHz cavity when its average power output is 500 µW. (bottom) For the 2.2 GHz cavity when its average power output is 500 µW.
Fig. 8.
Fig. 8. Fiber amplifier structure.
Fig. 9.
Fig. 9. Experimental and simulated output optical spectrum of the mode-locked fiber oscillator in logarithmic scale for the 1.0 GHz cavity (top) and 2.2 GHz cavity (bottom).
Fig. 10.
Fig. 10. Amplifier output power vs pump diode current. 200 mW of output average power are reached at the 4 A current of the pump diode (at 4 A, the pump diode gives 5 W of continuous wavelength signal at 976 nm). In black, amplified average output power for 1.0 GHz seed. In red, amplified average output power for 2.2 GHz seed.
Fig. 11.
Fig. 11. Stability of the laser signal at the output of the amplifier for 48 h.
Fig. 12.
Fig. 12. The blue line represents the oscillator output pulse; the red line represents the amplified oscillator output pulse.
Fig. 13.
Fig. 13. Spectra at the output of the amplifier for different values of the current applied to the LD. 2.2 A corresponds with the 100 mW average output power.
Fig. 14.
Fig. 14. Optical spectrum of the 2.2 GHz amplified signal measured with a Brillouin optical spectrum analyzer. (top) Span of 0.1 nm and resolution of 0.08 pm. (bottom) Span of 2 nm and resolution of 0.08 pm.
Fig. 15.
Fig. 15. A,B: RF spectra of the photo-detected fundamental harmonic of the mode-locked oscillator output corresponding to setups of 1.0 and 2.2 GHz pulse repetition rates. A: fundamental harmonic, bandwidth of a 1 MHz and 2 Hz resolution. B: fundamental harmonic, bandwidth of a 10 MHz and 2 Hz resolution. C,D: corresponding RF spectra with a 25 GHz span and 6.2 MHz resolution.
Fig. 16.
Fig. 16. A,B: RF spectra of the photo-detected fundamental harmonic of the mode-locked amplified laser with a 100 mW of average power output corresponding to setups of 1.0 and 2.2 GHz pulse repetition rates. A: bandwidth of a 500 kHz and 2 Hz resolution. B: bandwidth of a 500 kHz and 2 Hz resolution. C,D: corresponding RF spectra with a 25 GHz span and 6.2 MHz resolution.
Fig. 17.
Fig. 17. Left: fiber optic laser structure situated in a compact layout. Right: closed structure. Output elements are situated in the back of the laser.
Fig. 18.
Fig. 18. Temperature control and antivibration mechanical design to enhance the stability (average power and frequency drift) of the laser cavity.
Fig. 19.
Fig. 19. MAX HOLD measure of the amplified signal during 2 h of continuous emission. In the $X$-axis, the frequency drift from 2.2311 GHz is represented.
Fig. 20.
Fig. 20. MAX HOLD measure made for different thermalization temperatures.

Tables (2)

Tables Icon

Table 1. Simulation Parameters

Tables Icon

Table 2. Simulation Comparison

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

z A ( z , T ) = ( L ^ + N ^ ) A ( z , T ) ,
L ^ = α 2 + g 2 i β 2 2 2 2 T + β 3 6 3 3 T ,
N ^ = i γ | A ( z , T ) | 2 .
g ( λ , z ) = Γ N t σ e m ( λ ) P p ( z ) P P t h σ a b s ( λ ) σ e m ( λ ) 1 + P p ( z ) P P t h 1 1 + P S P s a t ( z ) .
q ( A ( z , t ) ) t = q q 0 τ S A q | A ( z , t ) | 2 E S A .
G a i n 1.0 G H z = P o u t P i n = 540 G a i n 2.2 G H z = P o u t P i n = 282 .

Metrics